|
|
//! This module implements a non-interactive folding scheme
#![allow(non_snake_case)]
#![allow(clippy::type_complexity)]
use super::{
commitments::CompressedCommitment,
constants::NUM_CHALLENGE_BITS,
errors::NovaError,
r1cs::{R1CSGens, R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness},
traits::{AbsorbInROTrait, Group, ROTrait},
};
use core::marker::PhantomData;
/// A SNARK that holds the proof of a step of an incremental computation
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone, Debug)]
pub struct NIFS<G: Group> {
pub(crate) comm_T: CompressedCommitment<G::CompressedGroupElement>,
_p: PhantomData<G>,
}
type ROConstants<G> =
<<G as Group>::RO as ROTrait<<G as Group>::Base, <G as Group>::Scalar>>::Constants;
impl<G: Group> NIFS<G> {
/// Takes as input a Relaxed R1CS instance-witness tuple `(U1, W1)` and
/// an R1CS instance-witness tuple `(U2, W2)` with the same structure `shape`
/// and defined with respect to the same `gens`, and outputs
/// a folded Relaxed R1CS instance-witness tuple `(U, W)` of the same shape `shape`,
/// with the guarantee that the folded witness `W` satisfies the folded instance `U`
/// if and only if `W1` satisfies `U1` and `W2` satisfies `U2`.
pub fn prove(
gens: &R1CSGens<G>,
ro_consts: &ROConstants<G>,
S: &R1CSShape<G>,
U1: &RelaxedR1CSInstance<G>,
W1: &RelaxedR1CSWitness<G>,
U2: &R1CSInstance<G>,
W2: &R1CSWitness<G>,
) -> Result<(NIFS<G>, (RelaxedR1CSInstance<G>, RelaxedR1CSWitness<G>)), NovaError> {
// initialize a new RO
let mut ro = G::RO::new(ro_consts.clone());
// append S to the transcript
S.absorb_in_ro(&mut ro);
// append U1 and U2 to transcript
U1.absorb_in_ro(&mut ro);
U2.absorb_in_ro(&mut ro);
// compute a commitment to the cross-term
let (T, comm_T) = S.commit_T(gens, U1, W1, U2, W2)?;
// append `comm_T` to the transcript and obtain a challenge
comm_T.absorb_in_ro(&mut ro);
// compute a challenge from the RO
let r = ro.squeeze(NUM_CHALLENGE_BITS);
// fold the instance using `r` and `comm_T`
let U = U1.fold(U2, &comm_T, &r)?;
// fold the witness using `r` and `T`
let W = W1.fold(W2, &T, &r)?;
// return the folded instance and witness
Ok((
Self {
comm_T: comm_T.compress(),
_p: Default::default(),
},
(U, W),
))
}
/// Takes as input a relaxed R1CS instance `U1` and and R1CS instance `U2`
/// with the same shape and defined with respect to the same parameters,
/// and outputs a folded instance `U` with the same shape,
/// with the guarantee that the folded instance `U`
/// if and only if `U1` and `U2` are satisfiable.
pub fn verify(
&self,
ro_consts: &ROConstants<G>,
S: &R1CSShape<G>,
U1: &RelaxedR1CSInstance<G>,
U2: &R1CSInstance<G>,
) -> Result<RelaxedR1CSInstance<G>, NovaError> {
// initialize a new RO
let mut ro = G::RO::new(ro_consts.clone());
// append S to the transcript
S.absorb_in_ro(&mut ro);
// append U1 and U2 to transcript
U1.absorb_in_ro(&mut ro);
U2.absorb_in_ro(&mut ro);
// append `comm_T` to the transcript and obtain a challenge
let comm_T = self.comm_T.decompress()?;
comm_T.absorb_in_ro(&mut ro);
// compute a challenge from the RO
let r = ro.squeeze(NUM_CHALLENGE_BITS);
// fold the instance using `r` and `comm_T`
let U = U1.fold(U2, &comm_T, &r)?;
// return the folded instance
Ok(U)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::traits::{Group, ROConstantsTrait};
use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use ff::{Field, PrimeField};
use rand::rngs::OsRng;
type S = pasta_curves::pallas::Scalar;
type G = pasta_curves::pallas::Point;
fn synthesize_tiny_r1cs_bellperson<Scalar: PrimeField, CS: ConstraintSystem<Scalar>>(
cs: &mut CS,
x_val: Option<Scalar>,
) -> Result<(), SynthesisError> {
// Consider a cubic equation: `x^3 + x + 5 = y`, where `x` and `y` are respectively the input and output.
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x_val.unwrap()))?;
let _ = x.inputize(cs.namespace(|| "x is input"));
let x_sq = x.square(cs.namespace(|| "x_sq"))?;
let x_cu = x_sq.mul(cs.namespace(|| "x_cu"), &x)?;
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(x_cu.get_value().unwrap() + x.get_value().unwrap() + Scalar::from(5u64))
})?;
let _ = y.inputize(cs.namespace(|| "y is output"));
cs.enforce(
|| "y = x^3 + x + 5",
|lc| {
lc + x_cu.get_variable()
+ x.get_variable()
+ CS::one()
+ CS::one()
+ CS::one()
+ CS::one()
+ CS::one()
},
|lc| lc + CS::one(),
|lc| lc + y.get_variable(),
);
Ok(())
}
#[test]
fn test_tiny_r1cs_bellperson() {
use crate::bellperson::{
r1cs::{NovaShape, NovaWitness},
shape_cs::ShapeCS,
solver::SatisfyingAssignment,
};
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_tiny_r1cs_bellperson(&mut cs, None);
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
let ro_consts =
<<G as Group>::RO as ROTrait<<G as Group>::Base, <G as Group>::Scalar>>::Constants::new();
// Now get the instance and assignment for one instance
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_tiny_r1cs_bellperson(&mut cs, Some(S::from(5)));
let (U1, W1) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that the first instance is satisfiable
assert!(shape.is_sat(&gens, &U1, &W1).is_ok());
// Now get the instance and assignment for second instance
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_tiny_r1cs_bellperson(&mut cs, Some(S::from(135)));
let (U2, W2) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that the second instance is satisfiable
assert!(shape.is_sat(&gens, &U2, &W2).is_ok());
// execute a sequence of folds
execute_sequence(&gens, &ro_consts, &shape, &U1, &W1, &U2, &W2);
}
fn execute_sequence(
gens: &R1CSGens<G>,
ro_consts: &<<G as Group>::RO as ROTrait<<G as Group>::Base, <G as Group>::Scalar>>::Constants,
shape: &R1CSShape<G>,
U1: &R1CSInstance<G>,
W1: &R1CSWitness<G>,
U2: &R1CSInstance<G>,
W2: &R1CSWitness<G>,
) {
// produce a default running instance
let mut r_W = RelaxedR1CSWitness::default(shape);
let mut r_U = RelaxedR1CSInstance::default(gens, shape);
// produce a step SNARK with (W1, U1) as the first incoming witness-instance pair
let res = NIFS::prove(gens, ro_consts, shape, &r_U, &r_W, U1, W1);
assert!(res.is_ok());
let (nifs, (_U, W)) = res.unwrap();
// verify the step SNARK with U1 as the first incoming instance
let res = nifs.verify(ro_consts, shape, &r_U, U1);
assert!(res.is_ok());
let U = res.unwrap();
assert_eq!(U, _U);
// update the running witness and instance
r_W = W;
r_U = U;
// produce a step SNARK with (W2, U2) as the second incoming witness-instance pair
let res = NIFS::prove(gens, ro_consts, shape, &r_U, &r_W, U2, W2);
assert!(res.is_ok());
let (nifs, (_U, W)) = res.unwrap();
// verify the step SNARK with U1 as the first incoming instance
let res = nifs.verify(ro_consts, shape, &r_U, U2);
assert!(res.is_ok());
let U = res.unwrap();
assert_eq!(U, _U);
// update the running witness and instance
r_W = W;
r_U = U;
// check if the running instance is satisfiable
assert!(shape.is_sat_relaxed(gens, &r_U, &r_W).is_ok());
}
#[test]
fn test_tiny_r1cs() {
let one = S::one();
let (num_cons, num_vars, num_io, A, B, C) = {
let num_cons = 4;
let num_vars = 4;
let num_io = 2;
// Consider a cubic equation: `x^3 + x + 5 = y`, where `x` and `y` are respectively the input and output.
// The R1CS for this problem consists of the following constraints:
// `I0 * I0 - Z0 = 0`
// `Z0 * I0 - Z1 = 0`
// `(Z1 + I0) * 1 - Z2 = 0`
// `(Z2 + 5) * 1 - I1 = 0`
// Relaxed R1CS is a set of three sparse matrices (A B C), where there is a row for every
// constraint and a column for every entry in z = (vars, u, inputs)
// An R1CS instance is satisfiable iff:
// Az \circ Bz = u \cdot Cz + E, where z = (vars, 1, inputs)
let mut A: Vec<(usize, usize, S)> = Vec::new();
let mut B: Vec<(usize, usize, S)> = Vec::new();
let mut C: Vec<(usize, usize, S)> = Vec::new();
// constraint 0 entries in (A,B,C)
// `I0 * I0 - Z0 = 0`
A.push((0, num_vars + 1, one));
B.push((0, num_vars + 1, one));
C.push((0, 0, one));
// constraint 1 entries in (A,B,C)
// `Z0 * I0 - Z1 = 0`
A.push((1, 0, one));
B.push((1, num_vars + 1, one));
C.push((1, 1, one));
// constraint 2 entries in (A,B,C)
// `(Z1 + I0) * 1 - Z2 = 0`
A.push((2, 1, one));
A.push((2, num_vars + 1, one));
B.push((2, num_vars, one));
C.push((2, 2, one));
// constraint 3 entries in (A,B,C)
// `(Z2 + 5) * 1 - I1 = 0`
A.push((3, 2, one));
A.push((3, num_vars, one + one + one + one + one));
B.push((3, num_vars, one));
C.push((3, num_vars + 2, one));
(num_cons, num_vars, num_io, A, B, C)
};
// create a shape object
let S = {
let res = R1CSShape::new(num_cons, num_vars, num_io, &A, &B, &C);
assert!(res.is_ok());
res.unwrap()
};
// generate generators and ro constants
let gens = R1CSGens::new(num_cons, num_vars);
let ro_consts =
<<G as Group>::RO as ROTrait<<G as Group>::Base, <G as Group>::Scalar>>::Constants::new();
let rand_inst_witness_generator =
|gens: &R1CSGens<G>, I: &S| -> (S, R1CSInstance<G>, R1CSWitness<G>) {
let i0 = *I;
// compute a satisfying (vars, X) tuple
let (O, vars, X) = {
let z0 = i0 * i0; // constraint 0
let z1 = i0 * z0; // constraint 1
let z2 = z1 + i0; // constraint 2
let i1 = z2 + one + one + one + one + one; // constraint 3
// store the witness and IO for the instance
let W = vec![z0, z1, z2, S::zero()];
let X = vec![i0, i1];
(i1, W, X)
};
let W = {
let res = R1CSWitness::new(&S, &vars);
assert!(res.is_ok());
res.unwrap()
};
let U = {
let comm_W = W.commit(gens);
let res = R1CSInstance::new(&S, &comm_W, &X);
assert!(res.is_ok());
res.unwrap()
};
// check that generated instance is satisfiable
assert!(S.is_sat(gens, &U, &W).is_ok());
(O, U, W)
};
let mut csprng: OsRng = OsRng;
let I = S::random(&mut csprng); // the first input is picked randomly for the first instance
let (O, U1, W1) = rand_inst_witness_generator(&gens, &I);
let (_O, U2, W2) = rand_inst_witness_generator(&gens, &O);
// execute a sequence of folds
execute_sequence(&gens, &ro_consts, &S, &U1, &W1, &U2, &W2);
}
}
|