* a more optimal preprocessing SNARK * update version * cleanup; address clippymain
@ -0,0 +1,629 @@ |
|||||
|
use crate::{
|
||||
|
errors::NovaError,
|
||||
|
spartan::{
|
||||
|
math::Math,
|
||||
|
polynomial::{EqPolynomial, MultilinearPolynomial},
|
||||
|
sumcheck::{CompressedUniPoly, SumcheckProof, UniPoly},
|
||||
|
PolyEvalInstance, PolyEvalWitness,
|
||||
|
},
|
||||
|
traits::{commitment::CommitmentEngineTrait, Group, TranscriptEngineTrait},
|
||||
|
Commitment, CommitmentKey,
|
||||
|
};
|
||||
|
use core::marker::PhantomData;
|
||||
|
use ff::{Field, PrimeField};
|
||||
|
use rayon::prelude::*;
|
||||
|
use serde::{Deserialize, Serialize};
|
||||
|
|
||||
|
pub(crate) struct IdentityPolynomial<Scalar: PrimeField> {
|
||||
|
ell: usize,
|
||||
|
_p: PhantomData<Scalar>,
|
||||
|
}
|
||||
|
|
||||
|
impl<Scalar: PrimeField> IdentityPolynomial<Scalar> {
|
||||
|
pub fn new(ell: usize) -> Self {
|
||||
|
IdentityPolynomial {
|
||||
|
ell,
|
||||
|
_p: Default::default(),
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
|
||||
|
assert_eq!(self.ell, r.len());
|
||||
|
(0..self.ell)
|
||||
|
.map(|i| Scalar::from(2_usize.pow((self.ell - i - 1) as u32) as u64) * r[i])
|
||||
|
.fold(Scalar::zero(), |acc, item| acc + item)
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
impl<G: Group> SumcheckProof<G> {
|
||||
|
pub fn prove_cubic_with_additive_term_batched<F>(
|
||||
|
claim: &G::Scalar,
|
||||
|
num_rounds: usize,
|
||||
|
poly_vec: (
|
||||
|
&mut MultilinearPolynomial<G::Scalar>,
|
||||
|
&mut Vec<MultilinearPolynomial<G::Scalar>>,
|
||||
|
&mut Vec<MultilinearPolynomial<G::Scalar>>,
|
||||
|
&mut Vec<MultilinearPolynomial<G::Scalar>>,
|
||||
|
),
|
||||
|
coeffs: &[G::Scalar],
|
||||
|
comb_func: F,
|
||||
|
transcript: &mut G::TE,
|
||||
|
) -> Result<
|
||||
|
(
|
||||
|
Self,
|
||||
|
Vec<G::Scalar>,
|
||||
|
(G::Scalar, Vec<G::Scalar>, Vec<G::Scalar>, Vec<G::Scalar>),
|
||||
|
),
|
||||
|
NovaError,
|
||||
|
>
|
||||
|
where
|
||||
|
F: Fn(&G::Scalar, &G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar,
|
||||
|
{
|
||||
|
let (poly_A, poly_B_vec, poly_C_vec, poly_D_vec) = poly_vec;
|
||||
|
|
||||
|
let mut e = *claim;
|
||||
|
let mut r: Vec<G::Scalar> = Vec::new();
|
||||
|
let mut cubic_polys: Vec<CompressedUniPoly<G>> = Vec::new();
|
||||
|
|
||||
|
for _j in 0..num_rounds {
|
||||
|
let mut evals: Vec<(G::Scalar, G::Scalar, G::Scalar)> = Vec::new();
|
||||
|
|
||||
|
for ((poly_B, poly_C), poly_D) in poly_B_vec
|
||||
|
.iter()
|
||||
|
.zip(poly_C_vec.iter())
|
||||
|
.zip(poly_D_vec.iter())
|
||||
|
{
|
||||
|
let mut eval_point_0 = G::Scalar::zero();
|
||||
|
let mut eval_point_2 = G::Scalar::zero();
|
||||
|
let mut eval_point_3 = G::Scalar::zero();
|
||||
|
|
||||
|
let len = poly_A.len() / 2;
|
||||
|
for i in 0..len {
|
||||
|
// eval 0: bound_func is A(low)
|
||||
|
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]);
|
||||
|
|
||||
|
// eval 2: bound_func is -A(low) + 2*A(high)
|
||||
|
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
||||
|
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
||||
|
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
|
||||
|
let poly_D_bound_point = poly_D[len + i] + poly_D[len + i] - poly_D[i];
|
||||
|
|
||||
|
eval_point_2 += comb_func(
|
||||
|
&poly_A_bound_point,
|
||||
|
&poly_B_bound_point,
|
||||
|
&poly_C_bound_point,
|
||||
|
&poly_D_bound_point,
|
||||
|
);
|
||||
|
|
||||
|
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
||||
|
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
|
||||
|
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
|
||||
|
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
|
||||
|
let poly_D_bound_point = poly_D_bound_point + poly_D[len + i] - poly_D[i];
|
||||
|
|
||||
|
eval_point_3 += comb_func(
|
||||
|
&poly_A_bound_point,
|
||||
|
&poly_B_bound_point,
|
||||
|
&poly_C_bound_point,
|
||||
|
&poly_D_bound_point,
|
||||
|
);
|
||||
|
}
|
||||
|
|
||||
|
evals.push((eval_point_0, eval_point_2, eval_point_3));
|
||||
|
}
|
||||
|
|
||||
|
let evals_combined_0 = (0..evals.len())
|
||||
|
.map(|i| evals[i].0 * coeffs[i])
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
let evals_combined_2 = (0..evals.len())
|
||||
|
.map(|i| evals[i].1 * coeffs[i])
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
let evals_combined_3 = (0..evals.len())
|
||||
|
.map(|i| evals[i].2 * coeffs[i])
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
let evals = vec![
|
||||
|
evals_combined_0,
|
||||
|
e - evals_combined_0,
|
||||
|
evals_combined_2,
|
||||
|
evals_combined_3,
|
||||
|
];
|
||||
|
let poly = UniPoly::from_evals(&evals);
|
||||
|
|
||||
|
// append the prover's message to the transcript
|
||||
|
transcript.absorb(b"p", &poly);
|
||||
|
|
||||
|
// derive the verifier's challenge for the next round
|
||||
|
let r_i = transcript.squeeze(b"c")?;
|
||||
|
r.push(r_i);
|
||||
|
|
||||
|
// bound all tables to the verifier's challenege
|
||||
|
poly_A.bound_poly_var_top(&r_i);
|
||||
|
for ((poly_B, poly_C), poly_D) in poly_B_vec
|
||||
|
.iter_mut()
|
||||
|
.zip(poly_C_vec.iter_mut())
|
||||
|
.zip(poly_D_vec.iter_mut())
|
||||
|
{
|
||||
|
poly_B.bound_poly_var_top(&r_i);
|
||||
|
poly_C.bound_poly_var_top(&r_i);
|
||||
|
poly_D.bound_poly_var_top(&r_i);
|
||||
|
}
|
||||
|
|
||||
|
e = poly.evaluate(&r_i);
|
||||
|
cubic_polys.push(poly.compress());
|
||||
|
}
|
||||
|
|
||||
|
let poly_B_final = (0..poly_B_vec.len()).map(|i| poly_B_vec[i][0]).collect();
|
||||
|
let poly_C_final = (0..poly_C_vec.len()).map(|i| poly_C_vec[i][0]).collect();
|
||||
|
let poly_D_final = (0..poly_D_vec.len()).map(|i| poly_D_vec[i][0]).collect();
|
||||
|
let claims_prod = (poly_A[0], poly_B_final, poly_C_final, poly_D_final);
|
||||
|
|
||||
|
Ok((SumcheckProof::new(cubic_polys), r, claims_prod))
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
/// Provides a product argument using the algorithm described by Setty-Lee, 2020
|
||||
|
#[derive(Serialize, Deserialize)]
|
||||
|
#[serde(bound = "")]
|
||||
|
pub struct ProductArgument<G: Group> {
|
||||
|
comm_output_vec: Vec<Commitment<G>>,
|
||||
|
sc_proof: SumcheckProof<G>,
|
||||
|
eval_left_vec: Vec<G::Scalar>,
|
||||
|
eval_right_vec: Vec<G::Scalar>,
|
||||
|
eval_output_vec: Vec<G::Scalar>,
|
||||
|
eval_input_vec: Vec<G::Scalar>,
|
||||
|
eval_output2_vec: Vec<G::Scalar>,
|
||||
|
}
|
||||
|
|
||||
|
impl<G: Group> ProductArgument<G> {
|
||||
|
pub fn prove(
|
||||
|
ck: &CommitmentKey<G>,
|
||||
|
input_vec: &[Vec<G::Scalar>], // a commitment to the input and the input vector to multiplied together
|
||||
|
transcript: &mut G::TE,
|
||||
|
) -> Result<
|
||||
|
(
|
||||
|
Self,
|
||||
|
Vec<G::Scalar>,
|
||||
|
Vec<G::Scalar>,
|
||||
|
Vec<G::Scalar>,
|
||||
|
Vec<(PolyEvalWitness<G>, PolyEvalInstance<G>)>,
|
||||
|
),
|
||||
|
NovaError,
|
||||
|
> {
|
||||
|
let num_claims = input_vec.len();
|
||||
|
|
||||
|
let compute_layer = |input: &[G::Scalar]| -> (Vec<G::Scalar>, Vec<G::Scalar>, Vec<G::Scalar>) {
|
||||
|
let left = (0..input.len() / 2)
|
||||
|
.map(|i| input[2 * i])
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
|
||||
|
let right = (0..input.len() / 2)
|
||||
|
.map(|i| input[2 * i + 1])
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
|
||||
|
assert_eq!(left.len(), right.len());
|
||||
|
|
||||
|
let output = (0..left.len())
|
||||
|
.map(|i| left[i] * right[i])
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
|
||||
|
(left, right, output)
|
||||
|
};
|
||||
|
|
||||
|
// a closure that returns left, right, output, product
|
||||
|
let prepare_inputs =
|
||||
|
|input: &[G::Scalar]| -> (Vec<G::Scalar>, Vec<G::Scalar>, Vec<G::Scalar>, G::Scalar) {
|
||||
|
let mut left: Vec<G::Scalar> = Vec::new();
|
||||
|
let mut right: Vec<G::Scalar> = Vec::new();
|
||||
|
let mut output: Vec<G::Scalar> = Vec::new();
|
||||
|
|
||||
|
let mut out = input.to_vec();
|
||||
|
for _i in 0..input.len().log_2() {
|
||||
|
let (l, r, o) = compute_layer(&out);
|
||||
|
out = o.clone();
|
||||
|
|
||||
|
left.extend(l);
|
||||
|
right.extend(r);
|
||||
|
output.extend(o);
|
||||
|
}
|
||||
|
|
||||
|
// add a dummy product operation to make the left.len() == right.len() == output.len() == input.len()
|
||||
|
left.push(output[output.len() - 1]);
|
||||
|
right.push(G::Scalar::zero());
|
||||
|
output.push(G::Scalar::zero());
|
||||
|
|
||||
|
// output is stored at the last but one position
|
||||
|
let product = output[output.len() - 2];
|
||||
|
|
||||
|
assert_eq!(left.len(), right.len());
|
||||
|
assert_eq!(left.len(), output.len());
|
||||
|
(left, right, output, product)
|
||||
|
};
|
||||
|
|
||||
|
let mut left_vec = Vec::new();
|
||||
|
let mut right_vec = Vec::new();
|
||||
|
let mut output_vec = Vec::new();
|
||||
|
let mut prod_vec = Vec::new();
|
||||
|
for input in input_vec {
|
||||
|
let (l, r, o, p) = prepare_inputs(input);
|
||||
|
left_vec.push(l);
|
||||
|
right_vec.push(r);
|
||||
|
output_vec.push(o);
|
||||
|
prod_vec.push(p);
|
||||
|
}
|
||||
|
|
||||
|
// commit to the outputs
|
||||
|
let comm_output_vec = (0..output_vec.len())
|
||||
|
.into_par_iter()
|
||||
|
.map(|i| G::CE::commit(ck, &output_vec[i]))
|
||||
|
.collect::<Vec<_>>();
|
||||
|
|
||||
|
// absorb the output commitment and the claimed product
|
||||
|
transcript.absorb(b"o", &comm_output_vec.as_slice());
|
||||
|
transcript.absorb(b"r", &prod_vec.as_slice());
|
||||
|
|
||||
|
// this assumes all vectors passed have the same length
|
||||
|
let num_rounds = output_vec[0].len().log_2();
|
||||
|
|
||||
|
// produce a fresh set of coeffs and a joint claim
|
||||
|
let coeff_vec = {
|
||||
|
let s = transcript.squeeze(b"r")?;
|
||||
|
let mut s_vec = vec![s];
|
||||
|
for i in 1..num_claims {
|
||||
|
s_vec.push(s_vec[i - 1] * s);
|
||||
|
}
|
||||
|
s_vec
|
||||
|
};
|
||||
|
|
||||
|
// generate randomness for the eq polynomial
|
||||
|
let rand_eq = (0..num_rounds)
|
||||
|
.map(|_i| transcript.squeeze(b"e"))
|
||||
|
.collect::<Result<Vec<G::Scalar>, NovaError>>()?;
|
||||
|
|
||||
|
let mut poly_A = MultilinearPolynomial::new(EqPolynomial::new(rand_eq).evals());
|
||||
|
let mut poly_B_vec = left_vec
|
||||
|
.clone()
|
||||
|
.into_par_iter()
|
||||
|
.map(MultilinearPolynomial::new)
|
||||
|
.collect::<Vec<_>>();
|
||||
|
let mut poly_C_vec = right_vec
|
||||
|
.clone()
|
||||
|
.into_par_iter()
|
||||
|
.map(MultilinearPolynomial::new)
|
||||
|
.collect::<Vec<_>>();
|
||||
|
let mut poly_D_vec = output_vec
|
||||
|
.clone()
|
||||
|
.into_par_iter()
|
||||
|
.map(MultilinearPolynomial::new)
|
||||
|
.collect::<Vec<_>>();
|
||||
|
|
||||
|
let comb_func =
|
||||
|
|poly_A_comp: &G::Scalar,
|
||||
|
poly_B_comp: &G::Scalar,
|
||||
|
poly_C_comp: &G::Scalar,
|
||||
|
poly_D_comp: &G::Scalar|
|
||||
|
-> G::Scalar { *poly_A_comp * (*poly_B_comp * *poly_C_comp - *poly_D_comp) };
|
||||
|
|
||||
|
let (sc_proof, rand, _claims) = SumcheckProof::prove_cubic_with_additive_term_batched(
|
||||
|
&G::Scalar::zero(),
|
||||
|
num_rounds,
|
||||
|
(
|
||||
|
&mut poly_A,
|
||||
|
&mut poly_B_vec,
|
||||
|
&mut poly_C_vec,
|
||||
|
&mut poly_D_vec,
|
||||
|
),
|
||||
|
&coeff_vec,
|
||||
|
comb_func,
|
||||
|
transcript,
|
||||
|
)?;
|
||||
|
|
||||
|
// claims[0] is about the Eq polynomial, which the verifier computes directly
|
||||
|
// claims[1] =? weighed sum of left(rand)
|
||||
|
// claims[2] =? weighted sum of right(rand)
|
||||
|
// claims[3] =? weighetd sum of output(rand), which is easy to verify by querying output
|
||||
|
// we also need to prove that output(output.len()-2) = claimed_product
|
||||
|
let eval_left_vec = (0..left_vec.len())
|
||||
|
.into_par_iter()
|
||||
|
.map(|i| MultilinearPolynomial::evaluate_with(&left_vec[i], &rand))
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
let eval_right_vec = (0..right_vec.len())
|
||||
|
.into_par_iter()
|
||||
|
.map(|i| MultilinearPolynomial::evaluate_with(&right_vec[i], &rand))
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
let eval_output_vec = (0..output_vec.len())
|
||||
|
.into_par_iter()
|
||||
|
.map(|i| MultilinearPolynomial::evaluate_with(&output_vec[i], &rand))
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
|
||||
|
// we now combine eval_left = left(rand) and eval_right = right(rand)
|
||||
|
// into claims about input and output
|
||||
|
transcript.absorb(b"l", &eval_left_vec.as_slice());
|
||||
|
transcript.absorb(b"r", &eval_right_vec.as_slice());
|
||||
|
transcript.absorb(b"o", &eval_output_vec.as_slice());
|
||||
|
|
||||
|
let c = transcript.squeeze(b"c")?;
|
||||
|
|
||||
|
// eval = (G::Scalar::one() - c) * eval_left + c * eval_right
|
||||
|
// eval is claimed evaluation of input||output(r, c), which can be proven by proving input(r[1..], c) and output(r[1..], c)
|
||||
|
let rand_ext = {
|
||||
|
let mut r = rand.clone();
|
||||
|
r.extend(&[c]);
|
||||
|
r
|
||||
|
};
|
||||
|
let eval_input_vec = (0..input_vec.len())
|
||||
|
.into_par_iter()
|
||||
|
.map(|i| MultilinearPolynomial::evaluate_with(&input_vec[i], &rand_ext[1..]))
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
|
||||
|
let eval_output2_vec = (0..output_vec.len())
|
||||
|
.into_par_iter()
|
||||
|
.map(|i| MultilinearPolynomial::evaluate_with(&output_vec[i], &rand_ext[1..]))
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
|
||||
|
// add claimed evaluations to the transcript
|
||||
|
transcript.absorb(b"i", &eval_input_vec.as_slice());
|
||||
|
transcript.absorb(b"o", &eval_output2_vec.as_slice());
|
||||
|
|
||||
|
// squeeze a challenge to combine multiple claims into one
|
||||
|
let powers_of_rho = {
|
||||
|
let s = transcript.squeeze(b"r")?;
|
||||
|
let mut s_vec = vec![s];
|
||||
|
for i in 1..num_claims {
|
||||
|
s_vec.push(s_vec[i - 1] * s);
|
||||
|
}
|
||||
|
s_vec
|
||||
|
};
|
||||
|
|
||||
|
// take weighted sum of input, output, and their commitments
|
||||
|
let product = prod_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(e, p)| *e * p)
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
let eval_output = eval_output_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(e, p)| *e * p)
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
let comm_output = comm_output_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(c, r_i)| *c * *r_i)
|
||||
|
.fold(Commitment::<G>::default(), |acc, item| acc + item);
|
||||
|
|
||||
|
let weighted_sum = |W: &[Vec<G::Scalar>], s: &[G::Scalar]| -> Vec<G::Scalar> {
|
||||
|
assert_eq!(W.len(), s.len());
|
||||
|
let mut p = vec![G::Scalar::zero(); W[0].len()];
|
||||
|
for i in 0..W.len() {
|
||||
|
for (j, item) in W[i].iter().enumerate().take(W[i].len()) {
|
||||
|
p[j] += *item * s[i]
|
||||
|
}
|
||||
|
}
|
||||
|
p
|
||||
|
};
|
||||
|
|
||||
|
let poly_output = weighted_sum(&output_vec, &powers_of_rho);
|
||||
|
|
||||
|
let eval_output2 = eval_output2_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(e, p)| *e * p)
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
let mut w_u_vec = Vec::new();
|
||||
|
|
||||
|
// eval_output = output(rand)
|
||||
|
w_u_vec.push((
|
||||
|
PolyEvalWitness {
|
||||
|
p: poly_output.clone(),
|
||||
|
},
|
||||
|
PolyEvalInstance {
|
||||
|
c: comm_output,
|
||||
|
x: rand.clone(),
|
||||
|
e: eval_output,
|
||||
|
},
|
||||
|
));
|
||||
|
|
||||
|
// claimed_product = output(1, ..., 1, 0)
|
||||
|
let x = {
|
||||
|
let mut x = vec![G::Scalar::one(); rand.len()];
|
||||
|
x[rand.len() - 1] = G::Scalar::zero();
|
||||
|
x
|
||||
|
};
|
||||
|
w_u_vec.push((
|
||||
|
PolyEvalWitness {
|
||||
|
p: poly_output.clone(),
|
||||
|
},
|
||||
|
PolyEvalInstance {
|
||||
|
c: comm_output,
|
||||
|
x,
|
||||
|
e: product,
|
||||
|
},
|
||||
|
));
|
||||
|
|
||||
|
// eval_output2 = output(rand_ext[1..])
|
||||
|
w_u_vec.push((
|
||||
|
PolyEvalWitness { p: poly_output },
|
||||
|
PolyEvalInstance {
|
||||
|
c: comm_output,
|
||||
|
x: rand_ext[1..].to_vec(),
|
||||
|
e: eval_output2,
|
||||
|
},
|
||||
|
));
|
||||
|
|
||||
|
let prod_arg = Self {
|
||||
|
comm_output_vec,
|
||||
|
sc_proof,
|
||||
|
|
||||
|
// claimed evaluations at rand
|
||||
|
eval_left_vec,
|
||||
|
eval_right_vec,
|
||||
|
eval_output_vec,
|
||||
|
|
||||
|
// claimed evaluations at rand_ext[1..]
|
||||
|
eval_input_vec: eval_input_vec.clone(),
|
||||
|
eval_output2_vec,
|
||||
|
};
|
||||
|
|
||||
|
Ok((
|
||||
|
prod_arg,
|
||||
|
prod_vec,
|
||||
|
rand_ext[1..].to_vec(),
|
||||
|
eval_input_vec,
|
||||
|
w_u_vec,
|
||||
|
))
|
||||
|
}
|
||||
|
|
||||
|
pub fn verify(
|
||||
|
&self,
|
||||
|
prod_vec: &[G::Scalar], // claimed products
|
||||
|
len: usize,
|
||||
|
transcript: &mut G::TE,
|
||||
|
) -> Result<(Vec<G::Scalar>, Vec<G::Scalar>, Vec<PolyEvalInstance<G>>), NovaError> {
|
||||
|
// absorb the provided commitment and claimed output
|
||||
|
transcript.absorb(b"o", &self.comm_output_vec.as_slice());
|
||||
|
transcript.absorb(b"r", &prod_vec.to_vec().as_slice());
|
||||
|
|
||||
|
let num_rounds = len.log_2();
|
||||
|
let num_claims = prod_vec.len();
|
||||
|
|
||||
|
// produce a fresh set of coeffs and a joint claim
|
||||
|
let coeff_vec = {
|
||||
|
let s = transcript.squeeze(b"r")?;
|
||||
|
let mut s_vec = vec![s];
|
||||
|
for i in 1..num_claims {
|
||||
|
s_vec.push(s_vec[i - 1] * s);
|
||||
|
}
|
||||
|
s_vec
|
||||
|
};
|
||||
|
|
||||
|
// generate randomness for the eq polynomial
|
||||
|
let rand_eq = (0..num_rounds)
|
||||
|
.map(|_i| transcript.squeeze(b"e"))
|
||||
|
.collect::<Result<Vec<G::Scalar>, NovaError>>()?;
|
||||
|
|
||||
|
let (final_claim, rand) = self.sc_proof.verify(
|
||||
|
G::Scalar::zero(), // claim
|
||||
|
num_rounds,
|
||||
|
3, // degree bound
|
||||
|
transcript,
|
||||
|
)?;
|
||||
|
|
||||
|
// verify the final claim along with output[output.len() - 2 ] = claim
|
||||
|
let eq = EqPolynomial::new(rand_eq).evaluate(&rand);
|
||||
|
let final_claim_expected = (0..num_claims)
|
||||
|
.map(|i| {
|
||||
|
coeff_vec[i]
|
||||
|
* eq
|
||||
|
* (self.eval_left_vec[i] * self.eval_right_vec[i] - self.eval_output_vec[i])
|
||||
|
})
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
if final_claim != final_claim_expected {
|
||||
|
return Err(NovaError::InvalidSumcheckProof);
|
||||
|
}
|
||||
|
|
||||
|
transcript.absorb(b"l", &self.eval_left_vec.as_slice());
|
||||
|
transcript.absorb(b"r", &self.eval_right_vec.as_slice());
|
||||
|
transcript.absorb(b"o", &self.eval_output_vec.as_slice());
|
||||
|
|
||||
|
let c = transcript.squeeze(b"c")?;
|
||||
|
let eval_vec = self
|
||||
|
.eval_left_vec
|
||||
|
.iter()
|
||||
|
.zip(self.eval_right_vec.iter())
|
||||
|
.map(|(l, r)| (G::Scalar::one() - c) * l + c * r)
|
||||
|
.collect::<Vec<G::Scalar>>();
|
||||
|
|
||||
|
// eval is claimed evaluation of input||output(r, c), which can be proven by proving input(r[1..], c) and output(r[1..], c)
|
||||
|
let rand_ext = {
|
||||
|
let mut r = rand.clone();
|
||||
|
r.extend(&[c]);
|
||||
|
r
|
||||
|
};
|
||||
|
|
||||
|
for (i, eval) in eval_vec.iter().enumerate() {
|
||||
|
if *eval
|
||||
|
!= (G::Scalar::one() - rand_ext[0]) * self.eval_input_vec[i]
|
||||
|
+ rand_ext[0] * self.eval_output2_vec[i]
|
||||
|
{
|
||||
|
return Err(NovaError::InvalidSumcheckProof);
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
transcript.absorb(b"i", &self.eval_input_vec.as_slice());
|
||||
|
transcript.absorb(b"o", &self.eval_output2_vec.as_slice());
|
||||
|
|
||||
|
// squeeze a challenge to combine multiple claims into one
|
||||
|
let powers_of_rho = {
|
||||
|
let s = transcript.squeeze(b"r")?;
|
||||
|
let mut s_vec = vec![s];
|
||||
|
for i in 1..num_claims {
|
||||
|
s_vec.push(s_vec[i - 1] * s);
|
||||
|
}
|
||||
|
s_vec
|
||||
|
};
|
||||
|
|
||||
|
// take weighted sum of input, output, and their commitments
|
||||
|
let product = prod_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(e, p)| *e * p)
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
let eval_output = self
|
||||
|
.eval_output_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(e, p)| *e * p)
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
let comm_output = self
|
||||
|
.comm_output_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(c, r_i)| *c * *r_i)
|
||||
|
.fold(Commitment::<G>::default(), |acc, item| acc + item);
|
||||
|
|
||||
|
let eval_output2 = self
|
||||
|
.eval_output2_vec
|
||||
|
.iter()
|
||||
|
.zip(powers_of_rho.iter())
|
||||
|
.map(|(e, p)| *e * p)
|
||||
|
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
||||
|
|
||||
|
let mut u_vec = Vec::new();
|
||||
|
|
||||
|
// eval_output = output(rand)
|
||||
|
u_vec.push(PolyEvalInstance {
|
||||
|
c: comm_output,
|
||||
|
x: rand.clone(),
|
||||
|
e: eval_output,
|
||||
|
});
|
||||
|
|
||||
|
// claimed_product = output(1, ..., 1, 0)
|
||||
|
let x = {
|
||||
|
let mut x = vec![G::Scalar::one(); rand.len()];
|
||||
|
x[rand.len() - 1] = G::Scalar::zero();
|
||||
|
x
|
||||
|
};
|
||||
|
u_vec.push(PolyEvalInstance {
|
||||
|
c: comm_output,
|
||||
|
x,
|
||||
|
e: product,
|
||||
|
});
|
||||
|
|
||||
|
// eval_output2 = output(rand_ext[1..])
|
||||
|
u_vec.push(PolyEvalInstance {
|
||||
|
c: comm_output,
|
||||
|
x: rand_ext[1..].to_vec(),
|
||||
|
e: eval_output2,
|
||||
|
});
|
||||
|
|
||||
|
// input-related claims are checked by the caller
|
||||
|
Ok((self.eval_input_vec.clone(), rand_ext[1..].to_vec(), u_vec))
|
||||
|
}
|
||||
|
}
|
@ -1,245 +0,0 @@ |
|||||
//! This module implements `CompCommitmentEngineTrait` using Spartan's SPARK compiler
|
|
||||
//! We also provide a trivial implementation that has the verifier evaluate the sparse polynomials
|
|
||||
use crate::{
|
|
||||
errors::NovaError,
|
|
||||
r1cs::R1CSShape,
|
|
||||
spartan::{math::Math, CompCommitmentEngineTrait, PolyEvalInstance, PolyEvalWitness},
|
|
||||
traits::{evaluation::EvaluationEngineTrait, Group, TranscriptReprTrait},
|
|
||||
CommitmentKey,
|
|
||||
};
|
|
||||
use core::marker::PhantomData;
|
|
||||
use serde::{Deserialize, Serialize};
|
|
||||
|
|
||||
/// A trivial implementation of `ComputationCommitmentEngineTrait`
|
|
||||
pub struct TrivialCompComputationEngine<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
|
|
||||
_p: PhantomData<G>,
|
|
||||
_p2: PhantomData<EE>,
|
|
||||
}
|
|
||||
|
|
||||
/// Provides an implementation of a trivial commitment
|
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct TrivialCommitment<G: Group> {
|
|
||||
S: R1CSShape<G>,
|
|
||||
}
|
|
||||
|
|
||||
/// Provides an implementation of a trivial decommitment
|
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct TrivialDecommitment<G: Group> {
|
|
||||
_p: PhantomData<G>,
|
|
||||
}
|
|
||||
|
|
||||
/// Provides an implementation of a trivial evaluation argument
|
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct TrivialEvaluationArgument<G: Group> {
|
|
||||
_p: PhantomData<G>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> TranscriptReprTrait<G> for TrivialCommitment<G> {
|
|
||||
fn to_transcript_bytes(&self) -> Vec<u8> {
|
|
||||
self.S.to_transcript_bytes()
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> CompCommitmentEngineTrait<G>
|
|
||||
for TrivialCompComputationEngine<G, EE>
|
|
||||
{
|
|
||||
type Decommitment = TrivialDecommitment<G>;
|
|
||||
type Commitment = TrivialCommitment<G>;
|
|
||||
type EvaluationArgument = TrivialEvaluationArgument<G>;
|
|
||||
|
|
||||
/// commits to R1CS matrices
|
|
||||
fn commit(
|
|
||||
_ck: &CommitmentKey<G>,
|
|
||||
S: &R1CSShape<G>,
|
|
||||
) -> Result<(Self::Commitment, Self::Decommitment), NovaError> {
|
|
||||
Ok((
|
|
||||
TrivialCommitment { S: S.clone() },
|
|
||||
TrivialDecommitment {
|
|
||||
_p: Default::default(),
|
|
||||
},
|
|
||||
))
|
|
||||
}
|
|
||||
|
|
||||
/// proves an evaluation of R1CS matrices viewed as polynomials
|
|
||||
fn prove(
|
|
||||
_ck: &CommitmentKey<G>,
|
|
||||
_S: &R1CSShape<G>,
|
|
||||
_decomm: &Self::Decommitment,
|
|
||||
_comm: &Self::Commitment,
|
|
||||
_r: &(&[G::Scalar], &[G::Scalar]),
|
|
||||
_transcript: &mut G::TE,
|
|
||||
) -> Result<
|
|
||||
(
|
|
||||
Self::EvaluationArgument,
|
|
||||
Vec<(PolyEvalWitness<G>, PolyEvalInstance<G>)>,
|
|
||||
),
|
|
||||
NovaError,
|
|
||||
> {
|
|
||||
Ok((
|
|
||||
TrivialEvaluationArgument {
|
|
||||
_p: Default::default(),
|
|
||||
},
|
|
||||
Vec::new(),
|
|
||||
))
|
|
||||
}
|
|
||||
|
|
||||
/// verifies an evaluation of R1CS matrices viewed as polynomials
|
|
||||
fn verify(
|
|
||||
comm: &Self::Commitment,
|
|
||||
r: &(&[G::Scalar], &[G::Scalar]),
|
|
||||
_arg: &Self::EvaluationArgument,
|
|
||||
_transcript: &mut G::TE,
|
|
||||
) -> Result<(G::Scalar, G::Scalar, G::Scalar, Vec<PolyEvalInstance<G>>), NovaError> {
|
|
||||
let (r_x, r_y) = r;
|
|
||||
let evals = SparsePolynomial::<G>::multi_evaluate(&[&comm.S.A, &comm.S.B, &comm.S.C], r_x, r_y);
|
|
||||
Ok((evals[0], evals[1], evals[2], Vec::new()))
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
mod product;
|
|
||||
mod sparse;
|
|
||||
|
|
||||
use sparse::{SparseEvaluationArgument, SparsePolynomial, SparsePolynomialCommitment};
|
|
||||
|
|
||||
/// A non-trivial implementation of `CompCommitmentEngineTrait` using Spartan's SPARK compiler
|
|
||||
pub struct SparkEngine<G: Group> {
|
|
||||
_p: PhantomData<G>,
|
|
||||
}
|
|
||||
|
|
||||
/// An implementation of Spark decommitment
|
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct SparkDecommitment<G: Group> {
|
|
||||
A: SparsePolynomial<G>,
|
|
||||
B: SparsePolynomial<G>,
|
|
||||
C: SparsePolynomial<G>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> SparkDecommitment<G> {
|
|
||||
fn new(S: &R1CSShape<G>) -> Self {
|
|
||||
let ell = (S.num_cons.log_2(), S.num_vars.log_2() + 1);
|
|
||||
let A = SparsePolynomial::new(ell, &S.A);
|
|
||||
let B = SparsePolynomial::new(ell, &S.B);
|
|
||||
let C = SparsePolynomial::new(ell, &S.C);
|
|
||||
|
|
||||
Self { A, B, C }
|
|
||||
}
|
|
||||
|
|
||||
fn commit(&self, ck: &CommitmentKey<G>) -> SparkCommitment<G> {
|
|
||||
let comm_A = self.A.commit(ck);
|
|
||||
let comm_B = self.B.commit(ck);
|
|
||||
let comm_C = self.C.commit(ck);
|
|
||||
|
|
||||
SparkCommitment {
|
|
||||
comm_A,
|
|
||||
comm_B,
|
|
||||
comm_C,
|
|
||||
}
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
/// An implementation of Spark commitment
|
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct SparkCommitment<G: Group> {
|
|
||||
comm_A: SparsePolynomialCommitment<G>,
|
|
||||
comm_B: SparsePolynomialCommitment<G>,
|
|
||||
comm_C: SparsePolynomialCommitment<G>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> TranscriptReprTrait<G> for SparkCommitment<G> {
|
|
||||
fn to_transcript_bytes(&self) -> Vec<u8> {
|
|
||||
let mut bytes = self.comm_A.to_transcript_bytes();
|
|
||||
bytes.extend(self.comm_B.to_transcript_bytes());
|
|
||||
bytes.extend(self.comm_C.to_transcript_bytes());
|
|
||||
bytes
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
/// Provides an implementation of a trivial evaluation argument
|
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct SparkEvaluationArgument<G: Group> {
|
|
||||
arg_A: SparseEvaluationArgument<G>,
|
|
||||
arg_B: SparseEvaluationArgument<G>,
|
|
||||
arg_C: SparseEvaluationArgument<G>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> CompCommitmentEngineTrait<G> for SparkEngine<G> {
|
|
||||
type Decommitment = SparkDecommitment<G>;
|
|
||||
type Commitment = SparkCommitment<G>;
|
|
||||
type EvaluationArgument = SparkEvaluationArgument<G>;
|
|
||||
|
|
||||
/// commits to R1CS matrices
|
|
||||
fn commit(
|
|
||||
ck: &CommitmentKey<G>,
|
|
||||
S: &R1CSShape<G>,
|
|
||||
) -> Result<(Self::Commitment, Self::Decommitment), NovaError> {
|
|
||||
let sparse = SparkDecommitment::new(S);
|
|
||||
let comm = sparse.commit(ck);
|
|
||||
Ok((comm, sparse))
|
|
||||
}
|
|
||||
|
|
||||
/// proves an evaluation of R1CS matrices viewed as polynomials
|
|
||||
fn prove(
|
|
||||
ck: &CommitmentKey<G>,
|
|
||||
S: &R1CSShape<G>,
|
|
||||
decomm: &Self::Decommitment,
|
|
||||
comm: &Self::Commitment,
|
|
||||
r: &(&[G::Scalar], &[G::Scalar]),
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<
|
|
||||
(
|
|
||||
Self::EvaluationArgument,
|
|
||||
Vec<(PolyEvalWitness<G>, PolyEvalInstance<G>)>,
|
|
||||
),
|
|
||||
NovaError,
|
|
||||
> {
|
|
||||
let (arg_A, u_w_vec_A) =
|
|
||||
SparseEvaluationArgument::prove(ck, &decomm.A, &S.A, &comm.comm_A, r, transcript)?;
|
|
||||
let (arg_B, u_w_vec_B) =
|
|
||||
SparseEvaluationArgument::prove(ck, &decomm.B, &S.B, &comm.comm_B, r, transcript)?;
|
|
||||
let (arg_C, u_w_vec_C) =
|
|
||||
SparseEvaluationArgument::prove(ck, &decomm.C, &S.C, &comm.comm_C, r, transcript)?;
|
|
||||
|
|
||||
let u_w_vec = {
|
|
||||
let mut u_w_vec = u_w_vec_A;
|
|
||||
u_w_vec.extend(u_w_vec_B);
|
|
||||
u_w_vec.extend(u_w_vec_C);
|
|
||||
u_w_vec
|
|
||||
};
|
|
||||
|
|
||||
Ok((
|
|
||||
SparkEvaluationArgument {
|
|
||||
arg_A,
|
|
||||
arg_B,
|
|
||||
arg_C,
|
|
||||
},
|
|
||||
u_w_vec,
|
|
||||
))
|
|
||||
}
|
|
||||
|
|
||||
/// verifies an evaluation of R1CS matrices viewed as polynomials
|
|
||||
fn verify(
|
|
||||
comm: &Self::Commitment,
|
|
||||
r: &(&[G::Scalar], &[G::Scalar]),
|
|
||||
arg: &Self::EvaluationArgument,
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<(G::Scalar, G::Scalar, G::Scalar, Vec<PolyEvalInstance<G>>), NovaError> {
|
|
||||
let (eval_A, u_vec_A) = arg.arg_A.verify(&comm.comm_A, r, transcript)?;
|
|
||||
let (eval_B, u_vec_B) = arg.arg_B.verify(&comm.comm_B, r, transcript)?;
|
|
||||
let (eval_C, u_vec_C) = arg.arg_C.verify(&comm.comm_C, r, transcript)?;
|
|
||||
|
|
||||
let u_vec = {
|
|
||||
let mut u_vec = u_vec_A;
|
|
||||
u_vec.extend(u_vec_B);
|
|
||||
u_vec.extend(u_vec_C);
|
|
||||
u_vec
|
|
||||
};
|
|
||||
|
|
||||
Ok((eval_A, eval_B, eval_C, u_vec))
|
|
||||
}
|
|
||||
}
|
|
@ -1,477 +0,0 @@ |
|||||
use crate::{
|
|
||||
errors::NovaError,
|
|
||||
spartan::{
|
|
||||
math::Math,
|
|
||||
polynomial::{EqPolynomial, MultilinearPolynomial},
|
|
||||
sumcheck::{CompressedUniPoly, SumcheckProof, UniPoly},
|
|
||||
},
|
|
||||
traits::{Group, TranscriptEngineTrait},
|
|
||||
};
|
|
||||
use core::marker::PhantomData;
|
|
||||
use ff::{Field, PrimeField};
|
|
||||
use serde::{Deserialize, Serialize};
|
|
||||
|
|
||||
pub(crate) struct IdentityPolynomial<Scalar: PrimeField> {
|
|
||||
ell: usize,
|
|
||||
_p: PhantomData<Scalar>,
|
|
||||
}
|
|
||||
|
|
||||
impl<Scalar: PrimeField> IdentityPolynomial<Scalar> {
|
|
||||
pub fn new(ell: usize) -> Self {
|
|
||||
IdentityPolynomial {
|
|
||||
ell,
|
|
||||
_p: Default::default(),
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
|
|
||||
assert_eq!(self.ell, r.len());
|
|
||||
(0..self.ell)
|
|
||||
.map(|i| Scalar::from(2_usize.pow((self.ell - i - 1) as u32) as u64) * r[i])
|
|
||||
.fold(Scalar::zero(), |acc, item| acc + item)
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> SumcheckProof<G> {
|
|
||||
pub fn prove_cubic<F>(
|
|
||||
claim: &G::Scalar,
|
|
||||
num_rounds: usize,
|
|
||||
poly_A: &mut MultilinearPolynomial<G::Scalar>,
|
|
||||
poly_B: &mut MultilinearPolynomial<G::Scalar>,
|
|
||||
poly_C: &mut MultilinearPolynomial<G::Scalar>,
|
|
||||
comb_func: F,
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<(Self, Vec<G::Scalar>, Vec<G::Scalar>), NovaError>
|
|
||||
where
|
|
||||
F: Fn(&G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar,
|
|
||||
{
|
|
||||
let mut e = *claim;
|
|
||||
let mut r: Vec<G::Scalar> = Vec::new();
|
|
||||
let mut cubic_polys: Vec<CompressedUniPoly<G>> = Vec::new();
|
|
||||
for _j in 0..num_rounds {
|
|
||||
let mut eval_point_0 = G::Scalar::zero();
|
|
||||
let mut eval_point_2 = G::Scalar::zero();
|
|
||||
let mut eval_point_3 = G::Scalar::zero();
|
|
||||
|
|
||||
let len = poly_A.len() / 2;
|
|
||||
for i in 0..len {
|
|
||||
// eval 0: bound_func is A(low)
|
|
||||
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
|
|
||||
|
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
|
||||
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
|
||||
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
|
||||
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
|
|
||||
eval_point_2 += comb_func(
|
|
||||
&poly_A_bound_point,
|
|
||||
&poly_B_bound_point,
|
|
||||
&poly_C_bound_point,
|
|
||||
);
|
|
||||
|
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
|
||||
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
|
|
||||
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
|
|
||||
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
|
|
||||
|
|
||||
eval_point_3 += comb_func(
|
|
||||
&poly_A_bound_point,
|
|
||||
&poly_B_bound_point,
|
|
||||
&poly_C_bound_point,
|
|
||||
);
|
|
||||
}
|
|
||||
|
|
||||
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
|
|
||||
let poly = UniPoly::from_evals(&evals);
|
|
||||
|
|
||||
// append the prover's message to the transcript
|
|
||||
transcript.absorb(b"p", &poly);
|
|
||||
|
|
||||
//derive the verifier's challenge for the next round
|
|
||||
let r_i = transcript.squeeze(b"c")?;
|
|
||||
r.push(r_i);
|
|
||||
|
|
||||
// bound all tables to the verifier's challenege
|
|
||||
poly_A.bound_poly_var_top(&r_i);
|
|
||||
poly_B.bound_poly_var_top(&r_i);
|
|
||||
poly_C.bound_poly_var_top(&r_i);
|
|
||||
e = poly.evaluate(&r_i);
|
|
||||
cubic_polys.push(poly.compress());
|
|
||||
}
|
|
||||
|
|
||||
Ok((
|
|
||||
Self::new(cubic_polys),
|
|
||||
r,
|
|
||||
vec![poly_A[0], poly_B[0], poly_C[0]],
|
|
||||
))
|
|
||||
}
|
|
||||
|
|
||||
pub fn prove_cubic_batched<F>(
|
|
||||
claim: &G::Scalar,
|
|
||||
num_rounds: usize,
|
|
||||
poly_vec: (
|
|
||||
&mut Vec<&mut MultilinearPolynomial<G::Scalar>>,
|
|
||||
&mut Vec<&mut MultilinearPolynomial<G::Scalar>>,
|
|
||||
&mut MultilinearPolynomial<G::Scalar>,
|
|
||||
),
|
|
||||
coeffs: &[G::Scalar],
|
|
||||
comb_func: F,
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<
|
|
||||
(
|
|
||||
Self,
|
|
||||
Vec<G::Scalar>,
|
|
||||
(Vec<G::Scalar>, Vec<G::Scalar>, G::Scalar),
|
|
||||
),
|
|
||||
NovaError,
|
|
||||
>
|
|
||||
where
|
|
||||
F: Fn(&G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar,
|
|
||||
{
|
|
||||
let (poly_A_vec, poly_B_vec, poly_C) = poly_vec;
|
|
||||
|
|
||||
let mut e = *claim;
|
|
||||
let mut r: Vec<G::Scalar> = Vec::new();
|
|
||||
let mut cubic_polys: Vec<CompressedUniPoly<G>> = Vec::new();
|
|
||||
|
|
||||
for _j in 0..num_rounds {
|
|
||||
let mut evals: Vec<(G::Scalar, G::Scalar, G::Scalar)> = Vec::new();
|
|
||||
|
|
||||
for (poly_A, poly_B) in poly_A_vec.iter().zip(poly_B_vec.iter()) {
|
|
||||
let mut eval_point_0 = G::Scalar::zero();
|
|
||||
let mut eval_point_2 = G::Scalar::zero();
|
|
||||
let mut eval_point_3 = G::Scalar::zero();
|
|
||||
|
|
||||
let len = poly_A.len() / 2;
|
|
||||
for i in 0..len {
|
|
||||
// eval 0: bound_func is A(low)
|
|
||||
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
|
|
||||
|
|
||||
// eval 2: bound_func is -A(low) + 2*A(high)
|
|
||||
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
|
|
||||
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
|
|
||||
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
|
|
||||
eval_point_2 += comb_func(
|
|
||||
&poly_A_bound_point,
|
|
||||
&poly_B_bound_point,
|
|
||||
&poly_C_bound_point,
|
|
||||
);
|
|
||||
|
|
||||
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
|
|
||||
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
|
|
||||
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
|
|
||||
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
|
|
||||
|
|
||||
eval_point_3 += comb_func(
|
|
||||
&poly_A_bound_point,
|
|
||||
&poly_B_bound_point,
|
|
||||
&poly_C_bound_point,
|
|
||||
);
|
|
||||
}
|
|
||||
|
|
||||
evals.push((eval_point_0, eval_point_2, eval_point_3));
|
|
||||
}
|
|
||||
|
|
||||
let evals_combined_0 = (0..evals.len())
|
|
||||
.map(|i| evals[i].0 * coeffs[i])
|
|
||||
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
||||
let evals_combined_2 = (0..evals.len())
|
|
||||
.map(|i| evals[i].1 * coeffs[i])
|
|
||||
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
||||
let evals_combined_3 = (0..evals.len())
|
|
||||
.map(|i| evals[i].2 * coeffs[i])
|
|
||||
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
||||
|
|
||||
let evals = vec![
|
|
||||
evals_combined_0,
|
|
||||
e - evals_combined_0,
|
|
||||
evals_combined_2,
|
|
||||
evals_combined_3,
|
|
||||
];
|
|
||||
let poly = UniPoly::from_evals(&evals);
|
|
||||
|
|
||||
// append the prover's message to the transcript
|
|
||||
transcript.absorb(b"p", &poly);
|
|
||||
|
|
||||
// derive the verifier's challenge for the next round
|
|
||||
let r_i = transcript.squeeze(b"c")?;
|
|
||||
r.push(r_i);
|
|
||||
|
|
||||
// bound all tables to the verifier's challenege
|
|
||||
for (poly_A, poly_B) in poly_A_vec.iter_mut().zip(poly_B_vec.iter_mut()) {
|
|
||||
poly_A.bound_poly_var_top(&r_i);
|
|
||||
poly_B.bound_poly_var_top(&r_i);
|
|
||||
}
|
|
||||
poly_C.bound_poly_var_top(&r_i);
|
|
||||
|
|
||||
e = poly.evaluate(&r_i);
|
|
||||
cubic_polys.push(poly.compress());
|
|
||||
}
|
|
||||
|
|
||||
let poly_A_final = (0..poly_A_vec.len()).map(|i| poly_A_vec[i][0]).collect();
|
|
||||
let poly_B_final = (0..poly_B_vec.len()).map(|i| poly_B_vec[i][0]).collect();
|
|
||||
let claims_prod = (poly_A_final, poly_B_final, poly_C[0]);
|
|
||||
|
|
||||
Ok((SumcheckProof::new(cubic_polys), r, claims_prod))
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
#[derive(Debug)]
|
|
||||
pub struct ProductArgumentInputs<G: Group> {
|
|
||||
left_vec: Vec<MultilinearPolynomial<G::Scalar>>,
|
|
||||
right_vec: Vec<MultilinearPolynomial<G::Scalar>>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> ProductArgumentInputs<G> {
|
|
||||
fn compute_layer(
|
|
||||
inp_left: &MultilinearPolynomial<G::Scalar>,
|
|
||||
inp_right: &MultilinearPolynomial<G::Scalar>,
|
|
||||
) -> (
|
|
||||
MultilinearPolynomial<G::Scalar>,
|
|
||||
MultilinearPolynomial<G::Scalar>,
|
|
||||
) {
|
|
||||
let len = inp_left.len() + inp_right.len();
|
|
||||
let outp_left = (0..len / 4)
|
|
||||
.map(|i| inp_left[i] * inp_right[i])
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let outp_right = (len / 4..len / 2)
|
|
||||
.map(|i| inp_left[i] * inp_right[i])
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
|
|
||||
(
|
|
||||
MultilinearPolynomial::new(outp_left),
|
|
||||
MultilinearPolynomial::new(outp_right),
|
|
||||
)
|
|
||||
}
|
|
||||
|
|
||||
pub fn new(poly: &MultilinearPolynomial<G::Scalar>) -> Self {
|
|
||||
let mut left_vec: Vec<MultilinearPolynomial<G::Scalar>> = Vec::new();
|
|
||||
let mut right_vec: Vec<MultilinearPolynomial<G::Scalar>> = Vec::new();
|
|
||||
let num_layers = poly.len().log_2();
|
|
||||
let (outp_left, outp_right) = poly.split(poly.len() / 2);
|
|
||||
|
|
||||
left_vec.push(outp_left);
|
|
||||
right_vec.push(outp_right);
|
|
||||
|
|
||||
for i in 0..num_layers - 1 {
|
|
||||
let (outp_left, outp_right) =
|
|
||||
ProductArgumentInputs::<G>::compute_layer(&left_vec[i], &right_vec[i]);
|
|
||||
left_vec.push(outp_left);
|
|
||||
right_vec.push(outp_right);
|
|
||||
}
|
|
||||
|
|
||||
Self {
|
|
||||
left_vec,
|
|
||||
right_vec,
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
pub fn evaluate(&self) -> G::Scalar {
|
|
||||
let len = self.left_vec.len();
|
|
||||
assert_eq!(self.left_vec[len - 1].get_num_vars(), 0);
|
|
||||
assert_eq!(self.right_vec[len - 1].get_num_vars(), 0);
|
|
||||
self.left_vec[len - 1][0] * self.right_vec[len - 1][0]
|
|
||||
}
|
|
||||
}
|
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct LayerProofBatched<G: Group> {
|
|
||||
proof: SumcheckProof<G>,
|
|
||||
claims_prod_left: Vec<G::Scalar>,
|
|
||||
claims_prod_right: Vec<G::Scalar>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> LayerProofBatched<G> {
|
|
||||
pub fn verify(
|
|
||||
&self,
|
|
||||
claim: G::Scalar,
|
|
||||
num_rounds: usize,
|
|
||||
degree_bound: usize,
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<(G::Scalar, Vec<G::Scalar>), NovaError> {
|
|
||||
self
|
|
||||
.proof
|
|
||||
.verify(claim, num_rounds, degree_bound, transcript)
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub(crate) struct ProductArgumentBatched<G: Group> {
|
|
||||
proof: Vec<LayerProofBatched<G>>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> ProductArgumentBatched<G> {
|
|
||||
pub fn prove(
|
|
||||
poly_vec: &[&MultilinearPolynomial<G::Scalar>],
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<(Self, Vec<G::Scalar>, Vec<G::Scalar>), NovaError> {
|
|
||||
let mut prod_circuit_vec: Vec<_> = (0..poly_vec.len())
|
|
||||
.map(|i| ProductArgumentInputs::<G>::new(poly_vec[i]))
|
|
||||
.collect();
|
|
||||
|
|
||||
let mut proof_layers: Vec<LayerProofBatched<G>> = Vec::new();
|
|
||||
let num_layers = prod_circuit_vec[0].left_vec.len();
|
|
||||
let evals = (0..prod_circuit_vec.len())
|
|
||||
.map(|i| prod_circuit_vec[i].evaluate())
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
|
|
||||
let mut claims_to_verify = evals.clone();
|
|
||||
let mut rand = Vec::new();
|
|
||||
for layer_id in (0..num_layers).rev() {
|
|
||||
let len = prod_circuit_vec[0].left_vec[layer_id].len()
|
|
||||
+ prod_circuit_vec[0].right_vec[layer_id].len();
|
|
||||
|
|
||||
let mut poly_C = MultilinearPolynomial::new(EqPolynomial::new(rand.clone()).evals());
|
|
||||
assert_eq!(poly_C.len(), len / 2);
|
|
||||
|
|
||||
let num_rounds_prod = poly_C.len().log_2();
|
|
||||
let comb_func_prod = |poly_A_comp: &G::Scalar,
|
|
||||
poly_B_comp: &G::Scalar,
|
|
||||
poly_C_comp: &G::Scalar|
|
|
||||
-> G::Scalar { *poly_A_comp * *poly_B_comp * *poly_C_comp };
|
|
||||
|
|
||||
let mut poly_A_batched: Vec<&mut MultilinearPolynomial<G::Scalar>> = Vec::new();
|
|
||||
let mut poly_B_batched: Vec<&mut MultilinearPolynomial<G::Scalar>> = Vec::new();
|
|
||||
for prod_circuit in prod_circuit_vec.iter_mut() {
|
|
||||
poly_A_batched.push(&mut prod_circuit.left_vec[layer_id]);
|
|
||||
poly_B_batched.push(&mut prod_circuit.right_vec[layer_id])
|
|
||||
}
|
|
||||
let poly_vec = (&mut poly_A_batched, &mut poly_B_batched, &mut poly_C);
|
|
||||
|
|
||||
// produce a fresh set of coeffs and a joint claim
|
|
||||
let coeff_vec = {
|
|
||||
let s = transcript.squeeze(b"r")?;
|
|
||||
let mut s_vec = vec![s];
|
|
||||
for i in 1..claims_to_verify.len() {
|
|
||||
s_vec.push(s_vec[i - 1] * s);
|
|
||||
}
|
|
||||
s_vec
|
|
||||
};
|
|
||||
|
|
||||
let claim = (0..claims_to_verify.len())
|
|
||||
.map(|i| claims_to_verify[i] * coeff_vec[i])
|
|
||||
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
||||
|
|
||||
let (proof, rand_prod, claims_prod) = SumcheckProof::prove_cubic_batched(
|
|
||||
&claim,
|
|
||||
num_rounds_prod,
|
|
||||
poly_vec,
|
|
||||
&coeff_vec,
|
|
||||
comb_func_prod,
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
|
|
||||
let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod;
|
|
||||
|
|
||||
let v = {
|
|
||||
let mut v = claims_prod_left.clone();
|
|
||||
v.extend(&claims_prod_right);
|
|
||||
v
|
|
||||
};
|
|
||||
transcript.absorb(b"p", &v.as_slice());
|
|
||||
|
|
||||
// produce a random challenge to condense two claims into a single claim
|
|
||||
let r_layer = transcript.squeeze(b"c")?;
|
|
||||
|
|
||||
claims_to_verify = (0..prod_circuit_vec.len())
|
|
||||
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
|
|
||||
let mut ext = vec![r_layer];
|
|
||||
ext.extend(rand_prod);
|
|
||||
rand = ext;
|
|
||||
|
|
||||
proof_layers.push(LayerProofBatched {
|
|
||||
proof,
|
|
||||
claims_prod_left,
|
|
||||
claims_prod_right,
|
|
||||
});
|
|
||||
}
|
|
||||
|
|
||||
Ok((
|
|
||||
ProductArgumentBatched {
|
|
||||
proof: proof_layers,
|
|
||||
},
|
|
||||
evals,
|
|
||||
rand,
|
|
||||
))
|
|
||||
}
|
|
||||
|
|
||||
pub fn verify(
|
|
||||
&self,
|
|
||||
claims_prod_vec: &[G::Scalar],
|
|
||||
len: usize,
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<(Vec<G::Scalar>, Vec<G::Scalar>), NovaError> {
|
|
||||
let num_layers = len.log_2();
|
|
||||
|
|
||||
let mut rand: Vec<G::Scalar> = Vec::new();
|
|
||||
if self.proof.len() != num_layers {
|
|
||||
return Err(NovaError::InvalidProductProof);
|
|
||||
}
|
|
||||
|
|
||||
let mut claims_to_verify = claims_prod_vec.to_owned();
|
|
||||
for (num_rounds, i) in (0..num_layers).enumerate() {
|
|
||||
// produce random coefficients, one for each instance
|
|
||||
let coeff_vec = {
|
|
||||
let s = transcript.squeeze(b"r")?;
|
|
||||
let mut s_vec = vec![s];
|
|
||||
for i in 1..claims_to_verify.len() {
|
|
||||
s_vec.push(s_vec[i - 1] * s);
|
|
||||
}
|
|
||||
s_vec
|
|
||||
};
|
|
||||
|
|
||||
// produce a joint claim
|
|
||||
let claim = (0..claims_to_verify.len())
|
|
||||
.map(|i| claims_to_verify[i] * coeff_vec[i])
|
|
||||
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
||||
|
|
||||
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript)?;
|
|
||||
|
|
||||
let claims_prod_left = &self.proof[i].claims_prod_left;
|
|
||||
let claims_prod_right = &self.proof[i].claims_prod_right;
|
|
||||
if claims_prod_left.len() != claims_prod_vec.len()
|
|
||||
|| claims_prod_right.len() != claims_prod_vec.len()
|
|
||||
{
|
|
||||
return Err(NovaError::InvalidProductProof);
|
|
||||
}
|
|
||||
|
|
||||
let v = {
|
|
||||
let mut v = claims_prod_left.clone();
|
|
||||
v.extend(claims_prod_right);
|
|
||||
v
|
|
||||
};
|
|
||||
transcript.absorb(b"p", &v.as_slice());
|
|
||||
|
|
||||
if rand.len() != rand_prod.len() {
|
|
||||
return Err(NovaError::InvalidProductProof);
|
|
||||
}
|
|
||||
|
|
||||
let eq: G::Scalar = (0..rand.len())
|
|
||||
.map(|i| {
|
|
||||
rand[i] * rand_prod[i] + (G::Scalar::one() - rand[i]) * (G::Scalar::one() - rand_prod[i])
|
|
||||
})
|
|
||||
.fold(G::Scalar::one(), |acc, item| acc * item);
|
|
||||
let claim_expected: G::Scalar = (0..claims_prod_vec.len())
|
|
||||
.map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq))
|
|
||||
.fold(G::Scalar::zero(), |acc, item| acc + item);
|
|
||||
|
|
||||
if claim_expected != claim_last {
|
|
||||
return Err(NovaError::InvalidProductProof);
|
|
||||
}
|
|
||||
|
|
||||
// produce a random challenge
|
|
||||
let r_layer = transcript.squeeze(b"c")?;
|
|
||||
|
|
||||
claims_to_verify = (0..claims_prod_left.len())
|
|
||||
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
|
|
||||
let mut ext = vec![r_layer];
|
|
||||
ext.extend(rand_prod);
|
|
||||
rand = ext;
|
|
||||
}
|
|
||||
Ok((claims_to_verify, rand))
|
|
||||
}
|
|
||||
}
|
|
@ -1,724 +0,0 @@ |
|||||
#![allow(clippy::type_complexity)]
|
|
||||
#![allow(clippy::too_many_arguments)]
|
|
||||
#![allow(clippy::needless_range_loop)]
|
|
||||
use crate::{
|
|
||||
errors::NovaError,
|
|
||||
spartan::{
|
|
||||
math::Math,
|
|
||||
polynomial::{EqPolynomial, MultilinearPolynomial},
|
|
||||
spark::product::{IdentityPolynomial, ProductArgumentBatched},
|
|
||||
PolyEvalInstance, PolyEvalWitness, SumcheckProof,
|
|
||||
},
|
|
||||
traits::{commitment::CommitmentEngineTrait, Group, TranscriptEngineTrait, TranscriptReprTrait},
|
|
||||
Commitment, CommitmentKey,
|
|
||||
};
|
|
||||
use ff::Field;
|
|
||||
use rayon::prelude::*;
|
|
||||
use serde::{Deserialize, Serialize};
|
|
||||
|
|
||||
/// A type that holds a sparse polynomial in dense representation
|
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct SparsePolynomial<G: Group> {
|
|
||||
ell: (usize, usize), // number of variables in each dimension
|
|
||||
|
|
||||
// dense representation
|
|
||||
row: Vec<G::Scalar>,
|
|
||||
col: Vec<G::Scalar>,
|
|
||||
val: Vec<G::Scalar>,
|
|
||||
|
|
||||
// timestamp polynomials
|
|
||||
row_read_ts: Vec<G::Scalar>,
|
|
||||
row_audit_ts: Vec<G::Scalar>,
|
|
||||
col_read_ts: Vec<G::Scalar>,
|
|
||||
col_audit_ts: Vec<G::Scalar>,
|
|
||||
}
|
|
||||
|
|
||||
/// A type that holds a commitment to a sparse polynomial
|
|
||||
#[derive(Clone, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct SparsePolynomialCommitment<G: Group> {
|
|
||||
ell: (usize, usize), // number of variables
|
|
||||
size: usize, // size of the dense representation
|
|
||||
|
|
||||
// commitments to the dense representation
|
|
||||
comm_row: Commitment<G>,
|
|
||||
comm_col: Commitment<G>,
|
|
||||
comm_val: Commitment<G>,
|
|
||||
|
|
||||
// commitments to the timestamp polynomials
|
|
||||
comm_row_read_ts: Commitment<G>,
|
|
||||
comm_row_audit_ts: Commitment<G>,
|
|
||||
comm_col_read_ts: Commitment<G>,
|
|
||||
comm_col_audit_ts: Commitment<G>,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> TranscriptReprTrait<G> for SparsePolynomialCommitment<G> {
|
|
||||
fn to_transcript_bytes(&self) -> Vec<u8> {
|
|
||||
[
|
|
||||
self.comm_row,
|
|
||||
self.comm_col,
|
|
||||
self.comm_val,
|
|
||||
self.comm_row_read_ts,
|
|
||||
self.comm_row_audit_ts,
|
|
||||
self.comm_col_read_ts,
|
|
||||
self.comm_col_audit_ts,
|
|
||||
]
|
|
||||
.as_slice()
|
|
||||
.to_transcript_bytes()
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> SparsePolynomial<G> {
|
|
||||
pub fn new(ell: (usize, usize), M: &[(usize, usize, G::Scalar)]) -> Self {
|
|
||||
let mut row = M.iter().map(|(r, _, _)| *r).collect::<Vec<usize>>();
|
|
||||
let mut col = M.iter().map(|(_, c, _)| *c).collect::<Vec<usize>>();
|
|
||||
let mut val = M.iter().map(|(_, _, v)| *v).collect::<Vec<G::Scalar>>();
|
|
||||
|
|
||||
let num_ops = M.len().next_power_of_two();
|
|
||||
let num_cells_row = ell.0.pow2();
|
|
||||
let num_cells_col = ell.1.pow2();
|
|
||||
row.resize(num_ops, 0usize);
|
|
||||
col.resize(num_ops, 0usize);
|
|
||||
val.resize(num_ops, G::Scalar::zero());
|
|
||||
|
|
||||
// timestamp calculation routine
|
|
||||
let timestamp_calc =
|
|
||||
|num_ops: usize, num_cells: usize, addr_trace: &[usize]| -> (Vec<usize>, Vec<usize>) {
|
|
||||
let mut read_ts = vec![0usize; num_ops];
|
|
||||
let mut audit_ts = vec![0usize; num_cells];
|
|
||||
|
|
||||
assert!(num_ops >= addr_trace.len());
|
|
||||
for i in 0..addr_trace.len() {
|
|
||||
let addr = addr_trace[i];
|
|
||||
assert!(addr < num_cells);
|
|
||||
let r_ts = audit_ts[addr];
|
|
||||
read_ts[i] = r_ts;
|
|
||||
|
|
||||
let w_ts = r_ts + 1;
|
|
||||
audit_ts[addr] = w_ts;
|
|
||||
}
|
|
||||
(read_ts, audit_ts)
|
|
||||
};
|
|
||||
|
|
||||
// timestamp polynomials for row
|
|
||||
let (row_read_ts, row_audit_ts) = timestamp_calc(num_ops, num_cells_row, &row);
|
|
||||
let (col_read_ts, col_audit_ts) = timestamp_calc(num_ops, num_cells_col, &col);
|
|
||||
|
|
||||
let to_vec_scalar = |v: &[usize]| -> Vec<G::Scalar> {
|
|
||||
(0..v.len())
|
|
||||
.map(|i| G::Scalar::from(v[i] as u64))
|
|
||||
.collect::<Vec<G::Scalar>>()
|
|
||||
};
|
|
||||
|
|
||||
Self {
|
|
||||
ell,
|
|
||||
// dense representation
|
|
||||
row: to_vec_scalar(&row),
|
|
||||
col: to_vec_scalar(&col),
|
|
||||
val,
|
|
||||
|
|
||||
// timestamp polynomials
|
|
||||
row_read_ts: to_vec_scalar(&row_read_ts),
|
|
||||
row_audit_ts: to_vec_scalar(&row_audit_ts),
|
|
||||
col_read_ts: to_vec_scalar(&col_read_ts),
|
|
||||
col_audit_ts: to_vec_scalar(&col_audit_ts),
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
pub fn commit(&self, ck: &CommitmentKey<G>) -> SparsePolynomialCommitment<G> {
|
|
||||
let comm_vec: Vec<Commitment<G>> = [
|
|
||||
&self.row,
|
|
||||
&self.col,
|
|
||||
&self.val,
|
|
||||
&self.row_read_ts,
|
|
||||
&self.row_audit_ts,
|
|
||||
&self.col_read_ts,
|
|
||||
&self.col_audit_ts,
|
|
||||
]
|
|
||||
.par_iter()
|
|
||||
.map(|v| G::CE::commit(ck, v))
|
|
||||
.collect();
|
|
||||
|
|
||||
SparsePolynomialCommitment {
|
|
||||
ell: self.ell,
|
|
||||
size: self.row.len(),
|
|
||||
comm_row: comm_vec[0],
|
|
||||
comm_col: comm_vec[1],
|
|
||||
comm_val: comm_vec[2],
|
|
||||
comm_row_read_ts: comm_vec[3],
|
|
||||
comm_row_audit_ts: comm_vec[4],
|
|
||||
comm_col_read_ts: comm_vec[5],
|
|
||||
comm_col_audit_ts: comm_vec[6],
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
pub fn multi_evaluate(
|
|
||||
M_vec: &[&[(usize, usize, G::Scalar)]],
|
|
||||
r_x: &[G::Scalar],
|
|
||||
r_y: &[G::Scalar],
|
|
||||
) -> Vec<G::Scalar> {
|
|
||||
let evaluate_with_table =
|
|
||||
|M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar {
|
|
||||
(0..M.len())
|
|
||||
.collect::<Vec<usize>>()
|
|
||||
.par_iter()
|
|
||||
.map(|&i| {
|
|
||||
let (row, col, val) = M[i];
|
|
||||
T_x[row] * T_y[col] * val
|
|
||||
})
|
|
||||
.reduce(G::Scalar::zero, |acc, x| acc + x)
|
|
||||
};
|
|
||||
|
|
||||
let (T_x, T_y) = rayon::join(
|
|
||||
|| EqPolynomial::new(r_x.to_vec()).evals(),
|
|
||||
|| EqPolynomial::new(r_y.to_vec()).evals(),
|
|
||||
);
|
|
||||
|
|
||||
(0..M_vec.len())
|
|
||||
.collect::<Vec<usize>>()
|
|
||||
.par_iter()
|
|
||||
.map(|&i| evaluate_with_table(M_vec[i], &T_x, &T_y))
|
|
||||
.collect()
|
|
||||
}
|
|
||||
|
|
||||
fn evaluation_oracles(
|
|
||||
M: &[(usize, usize, G::Scalar)],
|
|
||||
r_x: &[G::Scalar],
|
|
||||
r_y: &[G::Scalar],
|
|
||||
) -> (
|
|
||||
Vec<G::Scalar>,
|
|
||||
Vec<G::Scalar>,
|
|
||||
Vec<G::Scalar>,
|
|
||||
Vec<G::Scalar>,
|
|
||||
) {
|
|
||||
let evaluation_oracles_with_table = |M: &[(usize, usize, G::Scalar)],
|
|
||||
T_x: &[G::Scalar],
|
|
||||
T_y: &[G::Scalar]|
|
|
||||
-> (Vec<G::Scalar>, Vec<G::Scalar>) {
|
|
||||
(0..M.len())
|
|
||||
.collect::<Vec<usize>>()
|
|
||||
.par_iter()
|
|
||||
.map(|&i| {
|
|
||||
let (row, col, _val) = M[i];
|
|
||||
(T_x[row], T_y[col])
|
|
||||
})
|
|
||||
.collect::<Vec<(G::Scalar, G::Scalar)>>()
|
|
||||
.into_par_iter()
|
|
||||
.unzip()
|
|
||||
};
|
|
||||
|
|
||||
let (T_x, T_y) = rayon::join(
|
|
||||
|| EqPolynomial::new(r_x.to_vec()).evals(),
|
|
||||
|| EqPolynomial::new(r_y.to_vec()).evals(),
|
|
||||
);
|
|
||||
|
|
||||
let (mut E_row, mut E_col) = evaluation_oracles_with_table(M, &T_x, &T_y);
|
|
||||
|
|
||||
// resize the returned vectors
|
|
||||
E_row.resize(M.len().next_power_of_two(), T_x[0]); // we place T_x[0] since resized row is appended with 0s
|
|
||||
E_col.resize(M.len().next_power_of_two(), T_y[0]);
|
|
||||
(E_row, E_col, T_x, T_y)
|
|
||||
}
|
|
||||
}
|
|
||||
|
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
||||
#[serde(bound = "")]
|
|
||||
pub struct SparseEvaluationArgument<G: Group> {
|
|
||||
// claimed evaluation
|
|
||||
eval: G::Scalar,
|
|
||||
|
|
||||
// oracles
|
|
||||
comm_E_row: Commitment<G>,
|
|
||||
comm_E_col: Commitment<G>,
|
|
||||
|
|
||||
// proof of correct evaluation wrt oracles
|
|
||||
sc_proof_eval: SumcheckProof<G>,
|
|
||||
eval_E_row: G::Scalar,
|
|
||||
eval_E_col: G::Scalar,
|
|
||||
eval_val: G::Scalar,
|
|
||||
|
|
||||
// proof that E_row is well-formed
|
|
||||
eval_init_row: G::Scalar,
|
|
||||
eval_read_row: G::Scalar,
|
|
||||
eval_write_row: G::Scalar,
|
|
||||
eval_audit_row: G::Scalar,
|
|
||||
eval_init_col: G::Scalar,
|
|
||||
eval_read_col: G::Scalar,
|
|
||||
eval_write_col: G::Scalar,
|
|
||||
eval_audit_col: G::Scalar,
|
|
||||
sc_prod_init_audit_row: ProductArgumentBatched<G>,
|
|
||||
sc_prod_read_write_row_col: ProductArgumentBatched<G>,
|
|
||||
sc_prod_init_audit_col: ProductArgumentBatched<G>,
|
|
||||
eval_row: G::Scalar,
|
|
||||
eval_row_read_ts: G::Scalar,
|
|
||||
eval_E_row2: G::Scalar,
|
|
||||
eval_row_audit_ts: G::Scalar,
|
|
||||
eval_col: G::Scalar,
|
|
||||
eval_col_read_ts: G::Scalar,
|
|
||||
eval_E_col2: G::Scalar,
|
|
||||
eval_col_audit_ts: G::Scalar,
|
|
||||
}
|
|
||||
|
|
||||
impl<G: Group> SparseEvaluationArgument<G> {
|
|
||||
pub fn prove(
|
|
||||
ck: &CommitmentKey<G>,
|
|
||||
poly: &SparsePolynomial<G>,
|
|
||||
sparse: &[(usize, usize, G::Scalar)],
|
|
||||
comm: &SparsePolynomialCommitment<G>,
|
|
||||
r: &(&[G::Scalar], &[G::Scalar]),
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<(Self, Vec<(PolyEvalWitness<G>, PolyEvalInstance<G>)>), NovaError> {
|
|
||||
let (r_x, r_y) = r;
|
|
||||
let eval = SparsePolynomial::<G>::multi_evaluate(&[sparse], r_x, r_y)[0];
|
|
||||
|
|
||||
// keep track of evaluation claims
|
|
||||
let mut w_u_vec: Vec<(PolyEvalWitness<G>, PolyEvalInstance<G>)> = Vec::new();
|
|
||||
|
|
||||
// compute oracles to prove the correctness of `eval`
|
|
||||
let (E_row, E_col, T_x, T_y) = SparsePolynomial::<G>::evaluation_oracles(sparse, r_x, r_y);
|
|
||||
let val = poly.val.clone();
|
|
||||
|
|
||||
// commit to the two oracles
|
|
||||
let comm_E_row = G::CE::commit(ck, &E_row);
|
|
||||
let comm_E_col = G::CE::commit(ck, &E_col);
|
|
||||
|
|
||||
// absorb the commitments and the claimed evaluation
|
|
||||
transcript.absorb(b"E", &vec![comm_E_row, comm_E_col].as_slice());
|
|
||||
transcript.absorb(b"e", &eval);
|
|
||||
|
|
||||
let comb_func_eval = |poly_A_comp: &G::Scalar,
|
|
||||
poly_B_comp: &G::Scalar,
|
|
||||
poly_C_comp: &G::Scalar|
|
|
||||
-> G::Scalar { *poly_A_comp * *poly_B_comp * *poly_C_comp };
|
|
||||
let (sc_proof_eval, r_eval, claims_eval) = SumcheckProof::<G>::prove_cubic(
|
|
||||
&eval,
|
|
||||
E_row.len().log_2(), // number of rounds
|
|
||||
&mut MultilinearPolynomial::new(E_row.clone()),
|
|
||||
&mut MultilinearPolynomial::new(E_col.clone()),
|
|
||||
&mut MultilinearPolynomial::new(val.clone()),
|
|
||||
comb_func_eval,
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
|
|
||||
// prove evaluations of E_row, E_col and val at r_eval
|
|
||||
let rho = transcript.squeeze(b"r")?;
|
|
||||
let comm_joint = comm_E_row + comm_E_col * rho + comm.comm_val * rho * rho;
|
|
||||
let eval_joint = claims_eval[0] + rho * claims_eval[1] + rho * rho * claims_eval[2];
|
|
||||
let poly_eval = E_row
|
|
||||
.iter()
|
|
||||
.zip(E_col.iter())
|
|
||||
.zip(val.iter())
|
|
||||
.map(|((a, b), c)| *a + rho * *b + rho * rho * *c)
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
|
|
||||
// add the claim to prove for later
|
|
||||
w_u_vec.push((
|
|
||||
PolyEvalWitness { p: poly_eval },
|
|
||||
PolyEvalInstance {
|
|
||||
c: comm_joint,
|
|
||||
x: r_eval,
|
|
||||
e: eval_joint,
|
|
||||
},
|
|
||||
));
|
|
||||
|
|
||||
// we now need to prove that E_row and E_col are well-formed
|
|
||||
// we use memory checking: H(INIT) * H(WS) =? H(RS) * H(FINAL)
|
|
||||
let gamma_1 = transcript.squeeze(b"g1")?;
|
|
||||
let gamma_2 = transcript.squeeze(b"g2")?;
|
|
||||
|
|
||||
let gamma_1_sqr = gamma_1 * gamma_1;
|
|
||||
let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar {
|
|
||||
(*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2
|
|
||||
};
|
|
||||
|
|
||||
let init_row = (0..T_x.len())
|
|
||||
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_x[i], &G::Scalar::zero()))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let read_row = (0..E_row.len())
|
|
||||
.map(|i| hash_func(&poly.row[i], &E_row[i], &poly.row_read_ts[i]))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let write_row = (0..E_row.len())
|
|
||||
.map(|i| {
|
|
||||
hash_func(
|
|
||||
&poly.row[i],
|
|
||||
&E_row[i],
|
|
||||
&(poly.row_read_ts[i] + G::Scalar::one()),
|
|
||||
)
|
|
||||
})
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let audit_row = (0..T_x.len())
|
|
||||
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_x[i], &poly.row_audit_ts[i]))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let init_col = (0..T_y.len())
|
|
||||
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_y[i], &G::Scalar::zero()))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let read_col = (0..E_col.len())
|
|
||||
.map(|i| hash_func(&poly.col[i], &E_col[i], &poly.col_read_ts[i]))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let write_col = (0..E_col.len())
|
|
||||
.map(|i| {
|
|
||||
hash_func(
|
|
||||
&poly.col[i],
|
|
||||
&E_col[i],
|
|
||||
&(poly.col_read_ts[i] + G::Scalar::one()),
|
|
||||
)
|
|
||||
})
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
let audit_col = (0..T_y.len())
|
|
||||
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_y[i], &poly.col_audit_ts[i]))
|
|
||||
.collect::<Vec<G::Scalar>>();
|
|
||||
|
|
||||
let (sc_prod_init_audit_row, eval_init_audit_row, r_init_audit_row) =
|
|
||||
ProductArgumentBatched::prove(
|
|
||||
&[
|
|
||||
&MultilinearPolynomial::new(init_row),
|
|
||||
&MultilinearPolynomial::new(audit_row),
|
|
||||
],
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
|
|
||||
assert_eq!(init_col.len(), audit_col.len());
|
|
||||
let (sc_prod_init_audit_col, eval_init_audit_col, r_init_audit_col) =
|
|
||||
ProductArgumentBatched::prove(
|
|
||||
&[
|
|
||||
&MultilinearPolynomial::new(init_col),
|
|
||||
&MultilinearPolynomial::new(audit_col),
|
|
||||
],
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
|
|
||||
assert_eq!(read_row.len(), write_row.len());
|
|
||||
assert_eq!(read_row.len(), read_col.len());
|
|
||||
assert_eq!(read_row.len(), write_col.len());
|
|
||||
|
|
||||
let (sc_prod_read_write_row_col, eval_read_write_row_col, r_read_write_row_col) =
|
|
||||
ProductArgumentBatched::prove(
|
|
||||
&[
|
|
||||
&MultilinearPolynomial::new(read_row),
|
|
||||
&MultilinearPolynomial::new(write_row),
|
|
||||
&MultilinearPolynomial::new(read_col),
|
|
||||
&MultilinearPolynomial::new(write_col),
|
|
||||
],
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
|
|
||||
// row-related claims of polynomial evaluations to aid the final check of the sum-check
|
|
||||
let eval_row = MultilinearPolynomial::evaluate_with(&poly.row, &r_read_write_row_col);
|
|
||||
let eval_row_read_ts =
|
|
||||
MultilinearPolynomial::evaluate_with(&poly.row_read_ts, &r_read_write_row_col);
|
|
||||
let eval_E_row2 = MultilinearPolynomial::evaluate_with(&E_row, &r_read_write_row_col);
|
|
||||
let eval_row_audit_ts =
|
|
||||
MultilinearPolynomial::evaluate_with(&poly.row_audit_ts, &r_init_audit_row);
|
|
||||
|
|
||||
// col-related claims of polynomial evaluations to aid the final check of the sum-check
|
|
||||
let eval_col = MultilinearPolynomial::evaluate_with(&poly.col, &r_read_write_row_col);
|
|
||||
let eval_col_read_ts =
|
|
||||
MultilinearPolynomial::evaluate_with(&poly.col_read_ts, &r_read_write_row_col);
|
|
||||
let eval_E_col2 = MultilinearPolynomial::evaluate_with(&E_col, &r_read_write_row_col);
|
|
||||
let eval_col_audit_ts =
|
|
||||
MultilinearPolynomial::evaluate_with(&poly.col_audit_ts, &r_init_audit_col);
|
|
||||
|
|
||||
// we can batch prove the first three claims
|
|
||||
transcript.absorb(
|
|
||||
b"e",
|
|
||||
&[
|
|
||||
eval_row,
|
|
||||
eval_row_read_ts,
|
|
||||
eval_E_row2,
|
|
||||
eval_col,
|
|
||||
eval_col_read_ts,
|
|
||||
eval_E_col2,
|
|
||||
]
|
|
||||
.as_slice(),
|
|
||||
);
|
|
||||
let c = transcript.squeeze(b"c")?;
|
|
||||
let eval_joint = eval_row
|
|
||||
+ c * eval_row_read_ts
|
|
||||
+ c * c * eval_E_row2
|
|
||||
+ c * c * c * eval_col
|
|
||||
+ c * c * c * c * eval_col_read_ts
|
|
||||
+ c * c * c * c * c * eval_E_col2;
|
|
||||
let comm_joint = comm.comm_row
|
|
||||
+ comm.comm_row_read_ts * c
|
|
||||
+ comm_E_row * c * c
|
|
||||
+ comm.comm_col * c * c * c
|
|
||||
+ comm.comm_col_read_ts * c * c * c * c
|
|
||||
+ comm_E_col * c * c * c * c * c;
|
|
||||
let poly_joint = poly
|
|
||||
.row
|
|
||||
.iter()
|
|
||||
.zip(poly.row_read_ts.iter())
|
|
||||
.zip(E_row.into_iter())
|
|
||||
.zip(poly.col.iter())
|
|
||||
.zip(poly.col_read_ts.iter())
|
|
||||
.zip(E_col.into_iter())
|
|
||||
.map(|(((((x, y), z), m), n), q)| {
|
|
||||
*x + c * y + c * c * z + c * c * c * m + c * c * c * c * n + c * c * c * c * c * q
|
|
||||
})
|
|
||||
.collect::<Vec<_>>();
|
|
||||
|
|
||||
// add the claim to prove for later
|
|
||||
w_u_vec.push((
|
|
||||
PolyEvalWitness { p: poly_joint },
|
|
||||
PolyEvalInstance {
|
|
||||
c: comm_joint,
|
|
||||
x: r_read_write_row_col,
|
|
||||
e: eval_joint,
|
|
||||
},
|
|
||||
));
|
|
||||
|
|
||||
transcript.absorb(b"a", &eval_row_audit_ts); // add evaluation to transcript, commitment is already in
|
|
||||
w_u_vec.push((
|
|
||||
PolyEvalWitness {
|
|
||||
p: poly.row_audit_ts.clone(),
|
|
||||
},
|
|
||||
PolyEvalInstance {
|
|
||||
c: comm.comm_row_audit_ts,
|
|
||||
x: r_init_audit_row,
|
|
||||
e: eval_row_audit_ts,
|
|
||||
},
|
|
||||
));
|
|
||||
|
|
||||
transcript.absorb(b"a", &eval_col_audit_ts); // add evaluation to transcript, commitment is already in
|
|
||||
w_u_vec.push((
|
|
||||
PolyEvalWitness {
|
|
||||
p: poly.col_audit_ts.clone(),
|
|
||||
},
|
|
||||
PolyEvalInstance {
|
|
||||
c: comm.comm_col_audit_ts,
|
|
||||
x: r_init_audit_col,
|
|
||||
e: eval_col_audit_ts,
|
|
||||
},
|
|
||||
));
|
|
||||
|
|
||||
let eval_arg = Self {
|
|
||||
// claimed evaluation
|
|
||||
eval,
|
|
||||
|
|
||||
// oracles
|
|
||||
comm_E_row,
|
|
||||
comm_E_col,
|
|
||||
|
|
||||
// proof of correct evaluation wrt oracles
|
|
||||
sc_proof_eval,
|
|
||||
eval_E_row: claims_eval[0],
|
|
||||
eval_E_col: claims_eval[1],
|
|
||||
eval_val: claims_eval[2],
|
|
||||
|
|
||||
// proof that E_row and E_row are well-formed
|
|
||||
eval_init_row: eval_init_audit_row[0],
|
|
||||
eval_read_row: eval_read_write_row_col[0],
|
|
||||
eval_write_row: eval_read_write_row_col[1],
|
|
||||
eval_audit_row: eval_init_audit_row[1],
|
|
||||
eval_init_col: eval_init_audit_col[0],
|
|
||||
eval_read_col: eval_read_write_row_col[2],
|
|
||||
eval_write_col: eval_read_write_row_col[3],
|
|
||||
eval_audit_col: eval_init_audit_col[1],
|
|
||||
sc_prod_init_audit_row,
|
|
||||
sc_prod_read_write_row_col,
|
|
||||
sc_prod_init_audit_col,
|
|
||||
eval_row,
|
|
||||
eval_row_read_ts,
|
|
||||
eval_E_row2,
|
|
||||
eval_row_audit_ts,
|
|
||||
eval_col,
|
|
||||
eval_col_read_ts,
|
|
||||
eval_E_col2,
|
|
||||
eval_col_audit_ts,
|
|
||||
};
|
|
||||
|
|
||||
Ok((eval_arg, w_u_vec))
|
|
||||
}
|
|
||||
|
|
||||
pub fn verify(
|
|
||||
&self,
|
|
||||
comm: &SparsePolynomialCommitment<G>,
|
|
||||
r: &(&[G::Scalar], &[G::Scalar]),
|
|
||||
transcript: &mut G::TE,
|
|
||||
) -> Result<(G::Scalar, Vec<PolyEvalInstance<G>>), NovaError> {
|
|
||||
let (r_x, r_y) = r;
|
|
||||
|
|
||||
// keep track of evaluation claims
|
|
||||
let mut u_vec: Vec<PolyEvalInstance<G>> = Vec::new();
|
|
||||
|
|
||||
// append the transcript and scalar
|
|
||||
transcript.absorb(b"E", &vec![self.comm_E_row, self.comm_E_col].as_slice());
|
|
||||
transcript.absorb(b"e", &self.eval);
|
|
||||
|
|
||||
// (1) verify the correct evaluation of sparse polynomial
|
|
||||
let (claim_eval_final, r_eval) = self.sc_proof_eval.verify(
|
|
||||
self.eval,
|
|
||||
comm.size.next_power_of_two().log_2(),
|
|
||||
3,
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
// verify the last step of the sum-check
|
|
||||
if claim_eval_final != self.eval_E_row * self.eval_E_col * self.eval_val {
|
|
||||
return Err(NovaError::InvalidSumcheckProof);
|
|
||||
}
|
|
||||
|
|
||||
// prove evaluations of E_row, E_col and val at r_eval
|
|
||||
let rho = transcript.squeeze(b"r")?;
|
|
||||
let comm_joint = self.comm_E_row + self.comm_E_col * rho + comm.comm_val * rho * rho;
|
|
||||
let eval_joint = self.eval_E_row + rho * self.eval_E_col + rho * rho * self.eval_val;
|
|
||||
|
|
||||
// add the claim to prove for later
|
|
||||
u_vec.push(PolyEvalInstance {
|
|
||||
c: comm_joint,
|
|
||||
x: r_eval,
|
|
||||
e: eval_joint,
|
|
||||
});
|
|
||||
|
|
||||
// (2) verify if E_row and E_col are well formed
|
|
||||
let gamma_1 = transcript.squeeze(b"g1")?;
|
|
||||
let gamma_2 = transcript.squeeze(b"g2")?;
|
|
||||
|
|
||||
// hash function
|
|
||||
let gamma_1_sqr = gamma_1 * gamma_1;
|
|
||||
let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar {
|
|
||||
(*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2
|
|
||||
};
|
|
||||
|
|
||||
// check the required multiset relationship
|
|
||||
// row
|
|
||||
if self.eval_init_row * self.eval_write_row != self.eval_read_row * self.eval_audit_row {
|
|
||||
return Err(NovaError::InvalidMultisetProof);
|
|
||||
}
|
|
||||
// col
|
|
||||
if self.eval_init_col * self.eval_write_col != self.eval_read_col * self.eval_audit_col {
|
|
||||
return Err(NovaError::InvalidMultisetProof);
|
|
||||
}
|
|
||||
|
|
||||
// verify the product proofs
|
|
||||
let (claim_init_audit_row, r_init_audit_row) = self.sc_prod_init_audit_row.verify(
|
|
||||
&[self.eval_init_row, self.eval_audit_row],
|
|
||||
comm.ell.0.pow2(),
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
let (claim_init_audit_col, r_init_audit_col) = self.sc_prod_init_audit_col.verify(
|
|
||||
&[self.eval_init_col, self.eval_audit_col],
|
|
||||
comm.ell.1.pow2(),
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
let (claim_read_write_row_col, r_read_write_row_col) = self.sc_prod_read_write_row_col.verify(
|
|
||||
&[
|
|
||||
self.eval_read_row,
|
|
||||
self.eval_write_row,
|
|
||||
self.eval_read_col,
|
|
||||
self.eval_write_col,
|
|
||||
],
|
|
||||
comm.size,
|
|
||||
transcript,
|
|
||||
)?;
|
|
||||
|
|
||||
// finish the final step of the three sum-checks
|
|
||||
let (claim_init_expected_row, claim_audit_expected_row) = {
|
|
||||
let addr = IdentityPolynomial::new(r_init_audit_row.len()).evaluate(&r_init_audit_row);
|
|
||||
let val = EqPolynomial::new(r_x.to_vec()).evaluate(&r_init_audit_row);
|
|
||||
|
|
||||
(
|
|
||||
hash_func(&addr, &val, &G::Scalar::zero()),
|
|
||||
hash_func(&addr, &val, &self.eval_row_audit_ts),
|
|
||||
)
|
|
||||
};
|
|
||||
|
|
||||
let (claim_read_expected_row, claim_write_expected_row) = {
|
|
||||
(
|
|
||||
hash_func(&self.eval_row, &self.eval_E_row2, &self.eval_row_read_ts),
|
|
||||
hash_func(
|
|
||||
&self.eval_row,
|
|
||||
&self.eval_E_row2,
|
|
||||
&(self.eval_row_read_ts + G::Scalar::one()),
|
|
||||
),
|
|
||||
)
|
|
||||
};
|
|
||||
|
|
||||
// multiset check for the row
|
|
||||
if claim_init_expected_row != claim_init_audit_row[0]
|
|
||||
|| claim_audit_expected_row != claim_init_audit_row[1]
|
|
||||
|| claim_read_expected_row != claim_read_write_row_col[0]
|
|
||||
|| claim_write_expected_row != claim_read_write_row_col[1]
|
|
||||
{
|
|
||||
return Err(NovaError::InvalidSumcheckProof);
|
|
||||
}
|
|
||||
|
|
||||
let (claim_init_expected_col, claim_audit_expected_col) = {
|
|
||||
let addr = IdentityPolynomial::new(r_init_audit_col.len()).evaluate(&r_init_audit_col);
|
|
||||
let val = EqPolynomial::new(r_y.to_vec()).evaluate(&r_init_audit_col);
|
|
||||
|
|
||||
(
|
|
||||
hash_func(&addr, &val, &G::Scalar::zero()),
|
|
||||
hash_func(&addr, &val, &self.eval_col_audit_ts),
|
|
||||
)
|
|
||||
};
|
|
||||
|
|
||||
let (claim_read_expected_col, claim_write_expected_col) = {
|
|
||||
(
|
|
||||
hash_func(&self.eval_col, &self.eval_E_col2, &self.eval_col_read_ts),
|
|
||||
hash_func(
|
|
||||
&self.eval_col,
|
|
||||
&self.eval_E_col2,
|
|
||||
&(self.eval_col_read_ts + G::Scalar::one()),
|
|
||||
),
|
|
||||
)
|
|
||||
};
|
|
||||
|
|
||||
// multiset check for the col
|
|
||||
if claim_init_expected_col != claim_init_audit_col[0]
|
|
||||
|| claim_audit_expected_col != claim_init_audit_col[1]
|
|
||||
|| claim_read_expected_col != claim_read_write_row_col[2]
|
|
||||
|| claim_write_expected_col != claim_read_write_row_col[3]
|
|
||||
{
|
|
||||
return Err(NovaError::InvalidSumcheckProof);
|
|
||||
}
|
|
||||
|
|
||||
transcript.absorb(
|
|
||||
b"e",
|
|
||||
&[
|
|
||||
self.eval_row,
|
|
||||
self.eval_row_read_ts,
|
|
||||
self.eval_E_row2,
|
|
||||
self.eval_col,
|
|
||||
self.eval_col_read_ts,
|
|
||||
self.eval_E_col2,
|
|
||||
]
|
|
||||
.as_slice(),
|
|
||||
);
|
|
||||
let c = transcript.squeeze(b"c")?;
|
|
||||
let eval_joint = self.eval_row
|
|
||||
+ c * self.eval_row_read_ts
|
|
||||
+ c * c * self.eval_E_row2
|
|
||||
+ c * c * c * self.eval_col
|
|
||||
+ c * c * c * c * self.eval_col_read_ts
|
|
||||
+ c * c * c * c * c * self.eval_E_col2;
|
|
||||
let comm_joint = comm.comm_row
|
|
||||
+ comm.comm_row_read_ts * c
|
|
||||
+ self.comm_E_row * c * c
|
|
||||
+ comm.comm_col * c * c * c
|
|
||||
+ comm.comm_col_read_ts * c * c * c * c
|
|
||||
+ self.comm_E_col * c * c * c * c * c;
|
|
||||
|
|
||||
u_vec.push(PolyEvalInstance {
|
|
||||
c: comm_joint,
|
|
||||
x: r_read_write_row_col,
|
|
||||
e: eval_joint,
|
|
||||
});
|
|
||||
|
|
||||
transcript.absorb(b"a", &self.eval_row_audit_ts); // add evaluation to transcript, commitment is already in
|
|
||||
u_vec.push(PolyEvalInstance {
|
|
||||
c: comm.comm_row_audit_ts,
|
|
||||
x: r_init_audit_row,
|
|
||||
e: self.eval_row_audit_ts,
|
|
||||
});
|
|
||||
|
|
||||
transcript.absorb(b"a", &self.eval_col_audit_ts); // add evaluation to transcript, commitment is already in
|
|
||||
u_vec.push(PolyEvalInstance {
|
|
||||
c: comm.comm_col_audit_ts,
|
|
||||
x: r_init_audit_col,
|
|
||||
e: self.eval_col_audit_ts,
|
|
||||
});
|
|
||||
|
|
||||
Ok((self.eval, u_vec))
|
|
||||
}
|
|
||||
}
|
|