Browse Source

Nova-based VDF using MinRoot as an example (#86)

* add the MinRoot VDF example

* optimize a bit

* optimization and cleanup

* clippy

* add examples to CI

* use inbuilt pow_vartime
main
Srinath Setty 2 years ago
committed by GitHub
parent
commit
ff40d17cc4
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 234 additions and 0 deletions
  1. +2
    -0
      .github/workflows/rust.yml
  2. +232
    -0
      examples/minroot.rs

+ 2
- 0
.github/workflows/rust.yml

@ -19,6 +19,8 @@ jobs:
run: rustup component add clippy
- name: Build
run: cargo build --verbose
- name: Build examples
run: cargo build --examples --verbose
- name: Run tests
run: cargo +stable test --release --verbose
- name: Check Rustfmt Code Style

+ 232
- 0
examples/minroot.rs

@ -0,0 +1,232 @@
//! Demonstrates how to use Nova to produce a recursive proof of the correct execution of
//! iterations of the MinRoot function, thereby realizing a Nova-based verifiable delay function (VDF).
//! We currently execute a single iteration of the MinRoot function per step of Nova's recursion.
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G1>;
type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G2>;
use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use ff::PrimeField;
use generic_array::typenum::U2;
use neptune::{
circuit::poseidon_hash,
poseidon::{Poseidon, PoseidonConstants},
Strength,
};
use nova_snark::{
traits::{Group, StepCircuit},
CompressedSNARK, PublicParams, RecursiveSNARK,
};
use num_bigint::BigUint;
use std::marker::PhantomData;
// A trivial test circuit that we will use on the secondary curve
#[derive(Clone, Debug)]
struct TrivialTestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
fn compute(&self, z: &F) -> F {
*z
}
}
#[derive(Clone, Debug)]
struct MinRootCircuit<F: PrimeField> {
x_i: F,
y_i: F,
x_i_plus_1: F,
y_i_plus_1: F,
pc: PoseidonConstants<F, U2>,
}
impl<F: PrimeField> MinRootCircuit<F> {
// produces a sample non-deterministic advice, executing one invocation of MinRoot per step
fn new(num_steps: usize, x_0: &F, y_0: &F, pc: &PoseidonConstants<F, U2>) -> (F, Vec<Self>) {
// although this code is written generically, it is tailored to Pallas' scalar field
// (p - 3 / 5)
let exp = BigUint::parse_bytes(
b"23158417847463239084714197001737581570690445185553317903743794198714690358477",
10,
)
.unwrap();
let mut res = Vec::new();
let mut x_i = *x_0;
let mut y_i = *y_0;
for _i in 0..num_steps {
let x_i_plus_1 = (x_i + y_i).pow_vartime(exp.to_u64_digits()); // computes the fifth root of x_i + y_i
// sanity check
let sq = x_i_plus_1 * x_i_plus_1;
let quad = sq * sq;
let fifth = quad * x_i_plus_1;
debug_assert_eq!(fifth, x_i + y_i);
let y_i_plus_1 = x_i;
res.push(Self {
x_i,
y_i,
x_i_plus_1,
y_i_plus_1,
pc: pc.clone(),
});
x_i = x_i_plus_1;
y_i = y_i_plus_1;
}
let z0 = Poseidon::<F, U2>::new_with_preimage(&[*x_0, *y_0], pc).hash();
(z0, res)
}
}
impl<F> StepCircuit<F> for MinRootCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
// Allocate four variables for holding non-deterministic advice: x_i, y_i, x_i_plus_1, y_i_plus_1
let x_i = AllocatedNum::alloc(cs.namespace(|| "x_i"), || Ok(self.x_i))?;
let y_i = AllocatedNum::alloc(cs.namespace(|| "y_i"), || Ok(self.y_i))?;
let x_i_plus_1 = AllocatedNum::alloc(cs.namespace(|| "x_i_plus_1"), || Ok(self.x_i_plus_1))?;
// check that z = hash(x_i, y_i), where z is an output from the prior step
let z_hash = poseidon_hash(
cs.namespace(|| "input hash"),
vec![x_i.clone(), y_i.clone()],
&self.pc,
)?;
cs.enforce(
|| "z =? z_hash",
|lc| lc + z_hash.get_variable(),
|lc| lc + CS::one(),
|lc| lc + z.get_variable(),
);
// check the following conditions hold:
// (i) x_i_plus_1 = (x_i + y_i)^{1/5}, which can be more easily checked with x_i_plus_1^5 = x_i + y_i
// (ii) y_i_plus_1 = x_i
// (1) constraints for condition (i) are below
// (2) constraints for condition (ii) is avoided because we just used x_i wherever y_i_plus_1 is used
let x_i_plus_1_sq = x_i_plus_1.square(cs.namespace(|| "x_i_plus_1_sq"))?;
let x_i_plus_1_quad = x_i_plus_1_sq.square(cs.namespace(|| "x_i_plus_1_quad"))?;
let x_i_plus_1_pow_5 = x_i_plus_1_quad.mul(cs.namespace(|| "x_i_plus_1_pow_5"), &x_i_plus_1)?;
cs.enforce(
|| "x_i_plus_1_pow_5 = x_i + y_i",
|lc| lc + x_i_plus_1_pow_5.get_variable(),
|lc| lc + CS::one(),
|lc| lc + x_i.get_variable() + y_i.get_variable(),
);
// return hash(x_i_plus_1, y_i_plus_1) since Nova circuits expect a single output
poseidon_hash(
cs.namespace(|| "output hash"),
vec![x_i_plus_1, x_i.clone()],
&self.pc,
)
}
fn compute(&self, z: &F) -> F {
// sanity check
let z_hash = Poseidon::<F, U2>::new_with_preimage(&[self.x_i, self.y_i], &self.pc).hash();
debug_assert_eq!(z, &z_hash);
// compute output hash using advice
Poseidon::<F, U2>::new_with_preimage(&[self.x_i_plus_1, self.y_i_plus_1], &self.pc).hash()
}
}
fn main() {
let pc = PoseidonConstants::<<G1 as Group>::Scalar, U2>::new_with_strength(Strength::Standard);
let circuit_primary = MinRootCircuit {
x_i: <G1 as Group>::Scalar::zero(),
y_i: <G1 as Group>::Scalar::zero(),
x_i_plus_1: <G1 as Group>::Scalar::zero(),
y_i_plus_1: <G1 as Group>::Scalar::zero(),
pc: pc.clone(),
};
let circuit_secondary = TrivialTestCircuit {
_p: Default::default(),
};
// produce public parameters
let pp = PublicParams::<
G1,
G2,
MinRootCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>::setup(circuit_primary, circuit_secondary.clone());
// produce non-deterministic advice
let num_steps = 3;
let (z0_primary, minroot_circuits) = MinRootCircuit::new(
num_steps,
&<G1 as Group>::Scalar::zero(),
&<G1 as Group>::Scalar::one(),
&pc,
);
let z0_secondary = <G2 as Group>::Scalar::zero();
type C1 = MinRootCircuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
// produce a recursive SNARK
println!("Generating a RecursiveSNARK...");
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
for (i, circuit_primary) in minroot_circuits.iter().take(num_steps).enumerate() {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
z0_primary,
z0_secondary,
);
assert!(res.is_ok());
println!("RecursiveSNARK::prove_step {}: {:?}", i, res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
println!("Verifying a RecursiveSNARK...");
let res = recursive_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
println!("RecursiveSNARK::verify: {:?}", res.is_ok());
assert!(res.is_ok());
// produce a compressed SNARK
println!("Generating a CompressedSNARK...");
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark);
println!("CompressedSNARK::prove: {:?}", res.is_ok());
assert!(res.is_ok());
let compressed_snark = res.unwrap();
// verify the compressed SNARK
println!("Verifying a CompressedSNARK...");
let res = compressed_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
println!("CompressedSNARK::verify: {:?}", res.is_ok());
assert!(res.is_ok());
}

Loading…
Cancel
Save