9 Commits

Author SHA1 Message Date
druiz0992
86621a0dbe reduced test time 2020-05-03 20:17:57 +02:00
druiz0992
9ed6e14fad Leave prover_test untouched 2020-05-03 20:07:39 +02:00
druiz0992
2d45cb7039 Update tables.md 2020-05-03 19:58:04 +02:00
druiz0992
68b0c2fb54 Fixed merge conflicts 2020-05-03 19:53:52 +02:00
druiz0992
e3b5f88660 Added G2 and included tables to prover 2020-05-03 19:51:02 +02:00
druiz0992
36b48215f0 Update tables.md 2020-05-03 03:39:22 +02:00
druiz0992
a110eb4ca1 Update tables.md 2020-05-03 03:32:23 +02:00
druiz0992
72913bc801 Added a description file 2020-05-03 03:30:52 +02:00
druiz0992
8c81f5041e G1 Functionality to precomput G1 tables 2020-05-03 03:02:49 +02:00
6 changed files with 718 additions and 13 deletions

443
prover/gextra.go Normal file
View File

@@ -0,0 +1,443 @@
package prover
import (
"math/big"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
cryptoConstants "github.com/iden3/go-iden3-crypto/constants"
)
type TableG1 struct{
data []*bn256.G1
}
func (t TableG1) GetData() []*bn256.G1 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
// Table[2] = a[1]
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *TableG1) NewTableG1(a []*bn256.G1, gsize int){
// EC table
table := make([]*bn256.G1, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G1, 0)
a_ext = append(a_ext, a...)
for i:=len(a); i<gsize; i++ {
a_ext = append(a_ext,new(bn256.G1).ScalarBaseMult(big.NewInt(0)))
}
elG1 := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
table = append(table,elG1)
last_pow2 := 1
nelems := 0
for i :=1; i< 1<<gsize; i++ {
elG1 := new(bn256.G1)
// if power of 2
if i & (i-1) == 0{
last_pow2 = i
elG1.Set(a_ext[nelems])
nelems++
} else {
elG1.Add(table[last_pow2], table[i-last_pow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG1)
}
t.data = table
}
// Multiply scalar by precomputed table of G1 elements
func (t *TableG1) MulTableG1(k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i:=len(k); i < gsize; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
Q := new(bn256.G1).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
for i := msb-1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G1).Add(Q,Q)
b := getBit(k_ext,i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q,Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func MulTableNoDoubleG1(t []TableG1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G1,nbitsQ)
for i:=0; i< nbitsQ; i++ {
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j:=0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
}
}
}
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1])
for i:=nbitsQ-1; i>0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R,R)
R.Add(R,Q[i-1])
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
Q:= new(bn256.G1).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
table.NewTableG1( a[i*gsize:(i+1)*gsize], gsize)
Q = table.MulTableG1(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG1( a[(ntables-1)*gsize:], gsize)
Q = table.MulTableG1(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q,Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G1 elements without intermediate doubling
func ScalarMultNoDoubleG1(a []*bn256.G1, k []*big.Int, Q_prev *bn256.G1, gsize int) *bn256.G1 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG1{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G1,nbitsQ)
for i:=0; i< nbitsQ; i++ {
Q[i] = new(bn256.G1).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j:=0; j < ntables-1; j++ {
table.NewTableG1( a[j*gsize:(j+1)*gsize], gsize)
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG1( a[(ntables-1)*gsize:], gsize)
msb := getMsb(k_ext[(ntables-1)*gsize:])
for i := msb-1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
// Consolidate Addition
R := new(bn256.G1).Set(Q[nbitsQ-1])
for i:=nbitsQ-1; i>0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G1).Add(R,R)
R.Add(R,Q[i-1])
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
/////
// TODO - How can avoid replicating code in G2?
//G2
type TableG2 struct{
data []*bn256.G2
}
func (t TableG2) GetData() []*bn256.G2 {
return t.data
}
// Compute table of gsize elements as ::
// Table[0] = Inf
// Table[1] = a[0]
// Table[2] = a[1]
// Table[3] = a[0]+a[1]
// .....
// Table[(1<<gsize)-1] = a[0]+a[1]+...+a[gsize-1]
func (t *TableG2) NewTableG2(a []*bn256.G2, gsize int){
// EC table
table := make([]*bn256.G2, 0)
// We need at least gsize elements. If not enough, fill with 0
a_ext := make([]*bn256.G2, 0)
a_ext = append(a_ext, a...)
for i:=len(a); i<gsize; i++ {
a_ext = append(a_ext,new(bn256.G2).ScalarBaseMult(big.NewInt(0)))
}
elG2 := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
table = append(table,elG2)
last_pow2 := 1
nelems := 0
for i :=1; i< 1<<gsize; i++ {
elG2 := new(bn256.G2)
// if power of 2
if i & (i-1) == 0{
last_pow2 = i
elG2.Set(a_ext[nelems])
nelems++
} else {
elG2.Add(table[last_pow2], table[i-last_pow2])
// TODO bn256 doesn't export MakeAffine function. We need to fork repo
//table[i].MakeAffine()
}
table = append(table, elG2)
}
t.data = table
}
// Multiply scalar by precomputed table of G2 elements
func (t *TableG2) MulTableG2(k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i:=len(k); i < gsize; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
Q := new(bn256.G2).ScalarBaseMult(big.NewInt(0))
msb := getMsb(k_ext)
for i := msb-1; i >= 0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
Q = new(bn256.G2).Add(Q,Q)
b := getBit(k_ext,i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q.Add(Q, t.data[b])
}
}
if Q_prev != nil {
return Q.Add(Q, Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func MulTableNoDoubleG2(t []TableG2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
// We need at least gsize elements. If not enough, fill with 0
min_nelems := len(t) * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G2,nbitsQ)
for i:=0; i< nbitsQ; i++ {
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j:=0; j < len(t); j++ {
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], t[j].data[b])
}
}
}
// Consolidate Addition
R := new(bn256.G2).Set(Q[nbitsQ-1])
for i:=nbitsQ-1; i>0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G2).Add(R,R)
R.Add(R,Q[i-1])
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
// Compute tables within function. This solution should still be faster than std multiplication
// for gsize = 7
func ScalarMultG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
Q:= new(bn256.G2).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
table.NewTableG2( a[i*gsize:(i+1)*gsize], gsize)
Q = table.MulTableG2(k[i*gsize:(i+1)*gsize], Q, gsize)
}
table.NewTableG2( a[(ntables-1)*gsize:], gsize)
Q = table.MulTableG2(k[(ntables-1)*gsize:], Q, gsize)
if Q_prev != nil {
return Q.Add(Q,Q_prev)
} else {
return Q
}
}
// Multiply scalar by precomputed table of G2 elements without intermediate doubling
func ScalarMultNoDoubleG2(a []*bn256.G2, k []*big.Int, Q_prev *bn256.G2, gsize int) *bn256.G2 {
ntables := int((len(a) + gsize - 1) / gsize)
table := TableG2{}
// We need at least gsize elements. If not enough, fill with 0
min_nelems := ntables * gsize
k_ext := make([]*big.Int, 0)
k_ext = append(k_ext, k...)
for i := len(k); i < min_nelems; i++ {
k_ext = append(k_ext,new(big.Int).SetUint64(0))
}
// Init Adders
nbitsQ := cryptoConstants.Q.BitLen()
Q := make([]*bn256.G2,nbitsQ)
for i:=0; i< nbitsQ; i++ {
Q[i] = new(bn256.G2).ScalarBaseMult(big.NewInt(0))
}
// Perform bitwise addition
for j:=0; j < ntables-1; j++ {
table.NewTableG2( a[j*gsize:(j+1)*gsize], gsize)
msb := getMsb(k_ext[j*gsize:(j+1)*gsize])
for i := msb-1; i >= 0; i-- {
b := getBit(k_ext[j*gsize:(j+1)*gsize],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
}
table.NewTableG2( a[(ntables-1)*gsize:], gsize)
msb := getMsb(k_ext[(ntables-1)*gsize:])
for i := msb-1; i >= 0; i-- {
b := getBit(k_ext[(ntables-1)*gsize:],i)
if b != 0 {
// TODO. bn256 doesn't export mixed addition (Jacobian + Affine), which is more efficient.
Q[i].Add(Q[i], table.data[b])
}
}
// Consolidate Addition
R := new(bn256.G2).Set(Q[nbitsQ-1])
for i:=nbitsQ-1; i>0; i-- {
// TODO. bn256 doesn't export double operation. We will need to fork repo and export it
R = new(bn256.G2).Add(R,R)
R.Add(R,Q[i-1])
}
if Q_prev != nil {
return R.Add(R,Q_prev)
} else {
return R
}
}
// Return most significant bit position in a group of Big Integers
func getMsb(k []*big.Int) int{
msb := 0
for _, el := range(k){
tmp_msb := el.BitLen()
if tmp_msb > msb {
msb = tmp_msb
}
}
return msb
}
// Return ith bit in group of Big Integers
func getBit(k []*big.Int, i int) uint {
table_idx := uint(0)
for idx, el := range(k){
b := el.Bit(i)
table_idx += (b << idx)
}
return table_idx
}

166
prover/gextra_test.go Normal file
View File

@@ -0,0 +1,166 @@
package prover
import (
"crypto/rand"
"math/big"
"testing"
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"time"
"bytes"
"fmt"
)
const (
N1 = 5000
N2 = 5000
)
func randomBigIntArray(n int) []*big.Int{
var p []*big.Int
for i := 0; i < n; i++ {
pi := randBI()
p = append(p, pi)
}
return p
}
func randomG1Array(n int) []*bn256.G1 {
arrayG1 := make([]*bn256.G1, n)
for i:=0; i<n; i++ {
_, arrayG1[i], _ = bn256.RandomG1(rand.Reader)
}
return arrayG1
}
func randomG2Array(n int) []*bn256.G2 {
arrayG2 := make([]*bn256.G2, n)
for i:=0; i<n; i++ {
_, arrayG2[i], _ = bn256.RandomG2(rand.Reader)
}
return arrayG2
}
func TestTableG1(t *testing.T){
n := N1
// init scalar
var arrayW = randomBigIntArray(n)
// init G1 array
var arrayG1 = randomG1Array(n)
beforeT := time.Now()
Q1 := new(bn256.G1).ScalarBaseMult(new(big.Int))
for i:=0; i < n; i++ {
Q1.Add(Q1, new(bn256.G1).ScalarMult(arrayG1[i], arrayW[i]))
}
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT))
for gsize:=2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG1, ntables)
for i:=0; i<ntables-1; i++ {
table[i].NewTableG1( arrayG1[i*gsize:(i+1)*gsize], gsize)
}
table[ntables-1].NewTableG1( arrayG1[(ntables-1)*gsize:], gsize)
beforeT = time.Now()
Q2:= new(bn256.G1).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
Q2 = table[i].MulTableG1(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG1(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG1(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG1(arrayG1, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
if bytes.Compare(Q1.Marshal(),Q2.Marshal()) != 0 {
t.Error("Error in TMult")
}
if bytes.Compare(Q1.Marshal(),Q3.Marshal()) != 0 {
t.Error("Error in TMult with table comp")
}
if bytes.Compare(Q1.Marshal(),Q4.Marshal()) != 0 {
t.Error("Error in TMultNoDouble")
}
if bytes.Compare(Q1.Marshal(),Q5.Marshal()) != 0 {
t.Error("Error in TMultNoDoublee with table comp")
}
}
}
func TestTableG2(t *testing.T){
n := N2
// init scalar
var arrayW = randomBigIntArray(n)
// init G2 array
var arrayG2 = randomG2Array(n)
beforeT := time.Now()
Q1 := new(bn256.G2).ScalarBaseMult(new(big.Int))
for i:=0; i < n; i++ {
Q1.Add(Q1, new(bn256.G2).ScalarMult(arrayG2[i], arrayW[i]))
}
fmt.Println("Std. Mult. time elapsed:", time.Since(beforeT))
for gsize:=2; gsize < 10; gsize++ {
ntables := int((n + gsize - 1) / gsize)
table := make([]TableG2, ntables)
for i:=0; i<ntables-1; i++ {
table[i].NewTableG2( arrayG2[i*gsize:(i+1)*gsize], gsize)
}
table[ntables-1].NewTableG2( arrayG2[(ntables-1)*gsize:], gsize)
beforeT = time.Now()
Q2:= new(bn256.G2).ScalarBaseMult(new(big.Int))
for i:=0; i<ntables-1; i++ {
Q2 =table[i].MulTableG2(arrayW[i*gsize:(i+1)*gsize], Q2, gsize)
}
Q2 = table[ntables-1].MulTableG2(arrayW[(ntables-1)*gsize:], Q2, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q3 := ScalarMultG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMult time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q4 := MulTableNoDoubleG2(table, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed: %s\n", gsize,time.Since(beforeT))
beforeT = time.Now()
Q5 := ScalarMultNoDoubleG2(arrayG2, arrayW, nil, gsize)
fmt.Printf("Gsize : %d, TMultNoDouble time elapsed (inc table comp): %s\n", gsize,time.Since(beforeT))
if bytes.Compare(Q1.Marshal(),Q2.Marshal()) != 0 {
t.Error("Error in TMult")
}
if bytes.Compare(Q1.Marshal(),Q3.Marshal()) != 0 {
t.Error("Error in TMult with table comp")
}
if bytes.Compare(Q1.Marshal(),Q4.Marshal()) != 0 {
t.Error("Error in TMultNoDouble")
}
if bytes.Compare(Q1.Marshal(),Q5.Marshal()) != 0 {
t.Error("Error in TMultNoDoublee with table comp")
}
}
}

View File

@@ -10,6 +10,7 @@ import (
bn256 "github.com/ethereum/go-ethereum/crypto/bn256/cloudflare"
"github.com/iden3/go-circom-prover-verifier/types"
"github.com/iden3/go-iden3-crypto/utils"
//"fmt"
)
// Proof is the data structure of the Groth16 zkSNARK proof
@@ -42,6 +43,11 @@ type Pk struct {
// Witness contains the witness
type Witness []*big.Int
// Group Size
const (
GSIZE = 6
)
func randBigInt() (*big.Int, error) {
maxbits := types.R.BitLen()
b := make([]byte, (maxbits/8)-1)
@@ -75,19 +81,34 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
proofB := arrayOfZeroesG2(numcpu)
proofC := arrayOfZeroesG1(numcpu)
proofBG1 := arrayOfZeroesG1(numcpu)
gsize := GSIZE
var wg1 sync.WaitGroup
wg1.Add(numcpu)
for _cpu, _ranges := range ranges(pk.NVars, numcpu) {
// split 1
go func(cpu int, ranges [2]int) {
for i := ranges[0]; i < ranges[1]; i++ {
proofA[cpu].Add(proofA[cpu], new(bn256.G1).ScalarMult(pk.A[i], w[i]))
proofB[cpu].Add(proofB[cpu], new(bn256.G2).ScalarMult(pk.B2[i], w[i]))
proofBG1[cpu].Add(proofBG1[cpu], new(bn256.G1).ScalarMult(pk.B1[i], w[i]))
if i >= pk.NPublic+1 {
proofC[cpu].Add(proofC[cpu], new(bn256.G1).ScalarMult(pk.C[i], w[i]))
}
}
proofA[cpu] = ScalarMultNoDoubleG1(pk.A[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofA[cpu],
gsize)
proofB[cpu] = ScalarMultNoDoubleG2(pk.B2[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofB[cpu],
gsize)
proofBG1[cpu] = ScalarMultNoDoubleG1(pk.B1[ranges[0]:ranges[1]],
w[ranges[0]:ranges[1]],
proofBG1[cpu],
gsize)
min_lim := pk.NPublic+1
if ranges[0] > pk.NPublic+1 {
min_lim = ranges[0]
}
if ranges[1] > pk.NPublic + 1 {
proofC[cpu] = ScalarMultNoDoubleG1(pk.C[min_lim:ranges[1]],
w[min_lim:ranges[1]],
proofC[cpu],
gsize)
}
wg1.Done()
}(_cpu, _ranges)
}
@@ -121,9 +142,10 @@ func GenerateProof(pk *types.Pk, w types.Witness) (*types.Proof, []*big.Int, err
for _cpu, _ranges := range ranges(len(h), numcpu) {
// split 2
go func(cpu int, ranges [2]int) {
for i := ranges[0]; i < ranges[1]; i++ {
proofC[cpu].Add(proofC[cpu], new(bn256.G1).ScalarMult(pk.HExps[i], h[i]))
}
proofC[cpu] = ScalarMultNoDoubleG1(pk.HExps[ranges[0]:ranges[1]],
h[ranges[0]:ranges[1]],
proofC[cpu],
gsize)
wg2.Done()
}(_cpu, _ranges)
}

View File

@@ -16,8 +16,8 @@ import (
func TestCircuitsGenerateProof(t *testing.T) {
testCircuitGenerateProof(t, "circuit1k") // 1000 constraints
testCircuitGenerateProof(t, "circuit5k") // 5000 constraints
// testCircuitGenerateProof(t, "circuit10k") // 10000 constraints
// testCircuitGenerateProof(t, "circuit20k") // 20000 constraints
//testCircuitGenerateProof(t, "circuit10k") // 10000 constraints
//testCircuitGenerateProof(t, "circuit20k") // 20000 constraints
}
func testCircuitGenerateProof(t *testing.T, circuit string) {

49
prover/tables.md Normal file
View File

@@ -0,0 +1,49 @@
# Tables Pre-calculation
The most time consuming part of a ZKSnark proof calculation is the scalar multiplication of elliptic curve points. Direct mechanism accumulates each multiplication. However, prover only needs the total accumulation.
There are two potential improvements to the naive approach:
1. Apply Strauss-Shamir method (https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method).
2. Leave the doubling operation for the last step
Both options can be combined.
In the following table, we show the results of using the naive method, Srauss-Shamir and Strauss-Shamir + No doubling. These last two options are repeated for different table grouping order.
There are 50000 G1 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
There may be some concern on the additional size of the tables since they need to be loaded into a smartphone during the proof, and the time required to load these tables may exceed the benefits. If this is a problem, another althernative is to compute the tables during the proof itself. Depending on the Group Size, timing may be better than the naive approach.
| Algorithm (G1) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|---|---|---|---|---|---|---|---|---|
| Naive | 6.63s | - | - | - | - | - | - | - |
| Strauss | 13.16s | 9.03s | 6.95s | 5.61s | 4.91s | 4.26s | 3.88s | 3.54 s |
| Strauss + Table Computation | 16.13s | 11.32s | 8.47s | 7.10s | 6.2s | 5.94s | 6.01s | 6.69s |
| No Doubling | 3.74s | 3.00s | 2.38s | 1.96s | 1.79s | 1.54s | 1.50s | 1.44s|
| No Doubling + Table Computation | 6.83s | 5.1s | 4.16s | 3.52s| 3.22s | 3.21s | 3.57s | 4.56s |
There are 5000 G2 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
| Algorithm (G2) | GS 2 | GS 3 | GS 4 | GS 5 | GS 6 | GS 7 | GS 8 | GS 9 |
|---|---|---|---|---|---|---|---|---|
| Naive | 3.55s | | | | | | | |
| Strauss | 3.55s | 2.54s | 1.96s | 1.58s | 1.38s | 1.20s | 1.03s | 937ms |
| Strauss + Table Computation | 3.59s | 2.58s | 2.04s | 1.71s | 1.51s | 1.46s | 1.51s | 1.82s |
| No Doubling | 1.49s | 1.16s | 952ms | 719ms | 661ms | 548ms | 506ms| 444ms |
| No Doubling + Table Computation | 1.55s | 1.21s | 984ms | 841ms | 826ms | 847ms | 1.03s | 1.39s |
| GS | Extra Disk Space per Constraint (G1)|
|----|--------|
| 2 | 64 B |
| 3 | 106 B |
| 4 | 192 B |
| 5 | 346 B |
| 6 | 618 B |
| 7 | 1106 B |
| 8 | 1984 B |
| 9 | 3577 B |
| N | 2^(N+6)/N - 64 B |
Extra disk space per constraint in G2 is twice the requirements for G1

25
tables.md Normal file
View File

@@ -0,0 +1,25 @@
# Tables Pre-calculation
The most time consuming part of a ZKSnark proof calculation is the scalar multiplication of elliptic curve points. Direct mechanism accumulates each multiplication. However, prover only needs the total accumulation.
There are two potential improvements to the naive approach:
1. Apply Strauss-Shamir method (https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method).
2. Leave the doubling operation for the last step
Both options can be combined.
In the following table, we show the results of using the naive method, Srauss-Shamir and Strauss-Shamir + No doubling. These last two options are repeated for different table grouping order.
There are 5000 G1 Elliptical Curve Points, and the scalars are 254 bits (BN256 curve).
There may be some concern on the additional size of the tables since they need to be loaded into a smartphone during the proof, and the time required to load these tables may exceed the benefits. If this is a problem, another althernative is to compute the tables during the proof itself. Depending on the Group Size, timing may be better than the naive approach.
| Algorithm | GS / Time |
|---|---|---|
| Naive | 6.63s | | | | | | | |
| Strauss | 13.16s | 9.033s | 6.95s | 5.61s | 4.91s | 4.26s | 3.88s | 3.54 s | 1.44 s |
| Strauss + Table Computation | 16.13s | 11.32s | 8.47s | 7.10s | 6.2s | 5.94s | 6.01s | 6.69s |
| No Doubling | 3.74s | 3.00s | 2.38s | 1.96s | 1.79s | 1.54s | 1.50s | 1.44s|
| No Doubling + Table Computation | 6.83s | 5.1s | 4.16s | 3.52s| 3.22s | 3.21s | 3.57s | 4.56s |