Compare commits

...

16 Commits

Author SHA1 Message Date
arnaucube
048941e5e0 Update to goff v0.2.0 2020-04-08 10:47:26 +02:00
arnau
eb41fe0757 Merge pull request #18 from iden3/feature/fix32bits
Fix compat with 32 bit arch
2020-03-18 11:55:56 +01:00
Eduard S
e10db811aa Fix compat with 32 bit arch 2020-03-17 17:17:45 +01:00
Eduard S
ee467c6215 Merge pull request #16 from iden3/feature/mimc7-goff
Feature/mimc7 goff
2020-03-06 16:27:36 +01:00
arnaucube
4750e9c83c Remove field package which is no longer used 2020-03-06 16:24:41 +01:00
arnaucube
16a8a18a6d Optimize MiMC7 migrating from *big.Int to goff
Optimize MiMC7 migrating from *big.Int to goff generated finite field
operations.

There is still a lot of room for optimization for MiMC7 in the way that is done internally, but will be done in the future.

Benchmarks:
Tested on a Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, with 16GB of RAM.

- Before:
```
BenchmarkMIMC7-4   	    1026	   1160298 ns/op
```

- After this commit:
```
BenchmarkMIMC7-4   	   19263	     61651 ns/op
```
2020-03-05 17:35:25 +01:00
arnau
e8be761ec7 Merge pull request #15 from iden3/feature/poseidon-opt-goff
Feature/poseidon opt goff
2020-03-04 18:34:17 +01:00
arnaucube
2a3f0d9ed5 Adapt babyjub/eddsa to new Poseidon methods 2020-03-04 12:57:20 +01:00
Eduard S
5d88f7c4cd Merge pull request #13 from iden3/feature/update-bbjj-sig
Update BabyJubJub signature with Poseidon
2020-03-03 17:57:27 +01:00
arnaucube
b45d8a582b Optimize Poseidon migrating from *big.Int to goff
Optimize Poseidon migrating from *big.Int to goff generated finite field
operations.

Benchmarks:
Tested on a Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, with 16GB of RAM.

- Before the optimizations:
```
BenchmarkPoseidon-4                  470           2489678 ns/op
BenchmarkPoseidonLarge-4             476           2530568 ns/op
```

- With the optimizations of #12:
```
BenchmarkPoseidon-4                  766           1550013 ns/op
BenchmarkPoseidonLarge-4             782           1547572 ns/op
```

- With the changes of this PR, where uses goff generated code instead of *big.Int:
```
BenchmarkPoseidon-4                 9638            121651 ns/op
BenchmarkPoseidonLarge-4            9781            119921 ns/op
```
2020-03-03 16:31:40 +01:00
arnaucube
83f87bfa46 Resolve #4 2020-03-03 16:31:09 +01:00
arnaucube
17bad75853 Add goff generated finite field arithmetic code for used field 2020-03-03 16:30:00 +01:00
arnaucube
97c76ce614 Update BabyJubJub signature with Poseidon 2020-03-03 12:42:18 +01:00
arnau
937500b203 Merge pull request #12 from iden3/feature/optimizeposeidon
Optimize Poseidon
2019-12-22 20:40:00 +01:00
Eduard S
c0c4ff2dd7 Optimize Poseidon 2019-12-18 11:46:17 +01:00
Eduard S
8d5a7a7ccb Merge pull request #11 from iden3/fix/issue-9
Fix/issue #9
2019-12-18 11:03:37 +01:00
20 changed files with 2601 additions and 356 deletions

View File

@@ -4,5 +4,12 @@ language: go
go:
- "1.12"
jobs:
include:
- name: "Unit Tests 64 bit arch"
env: GOARCH="amd64"
- name: "Unit Test 32 bit arch"
env: GOARCH="386"
env:
- GO111MODULE=on

View File

@@ -222,11 +222,13 @@ func (k *PrivateKey) SignPoseidon(msg *big.Int) *Signature {
r.Mod(r, SubOrder)
R8 := NewPoint().Mul(r, B8) // R8 = r * 8 * B
A := k.Public().Point()
hmInput := []*big.Int{R8.X, R8.Y, A.X, A.Y, msg}
hm, err := poseidon.Hash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
hmInput := [poseidon.T]*big.Int{R8.X, R8.Y, A.X, A.Y, msg, big.NewInt(int64(0))}
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
if err != nil {
panic(err)
}
S := new(big.Int).Lsh(k.Scalar().BigInt(), 3)
S = S.Mul(hm, S)
S.Add(r, S)
@@ -238,8 +240,8 @@ func (k *PrivateKey) SignPoseidon(msg *big.Int) *Signature {
// VerifyPoseidon verifies the signature of a message encoded as a big.Int in Zq
// using blake-512 hash for buffer hashing and Poseidon for big.Int hashing.
func (p *PublicKey) VerifyPoseidon(msg *big.Int, sig *Signature) bool {
hmInput := []*big.Int{sig.R8.X, sig.R8.Y, p.X, p.Y, msg}
hm, err := poseidon.Hash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
hmInput := [poseidon.T]*big.Int{sig.R8.X, sig.R8.Y, p.X, p.Y, msg, big.NewInt(int64(0))}
hm, err := poseidon.PoseidonHash(hmInput) // hm = H1(8*R.x, 8*R.y, A.x, A.y, msg)
if err != nil {
panic(err)
}

View File

@@ -1,12 +1,15 @@
package constants
import (
"github.com/iden3/go-iden3-crypto/utils"
"fmt"
"math/big"
"github.com/iden3/go-iden3-crypto/ff"
)
// Q is the order of the integer field (Zq) that fits inside the SNARK.
var Q *big.Int
var QE *ff.Element
// Zero is 0.
var Zero *big.Int
@@ -21,6 +24,11 @@ func init() {
Zero = big.NewInt(0)
One = big.NewInt(1)
MinusOne = big.NewInt(-1)
Q = utils.NewIntFromString(
"21888242871839275222246405745257275088548364400416034343698204186575808495617")
qString := "21888242871839275222246405745257275088548364400416034343698204186575808495617"
var ok bool
Q, ok = new(big.Int).SetString(qString, 10)
if !ok {
panic(fmt.Sprintf("Bad base 10 string %s", qString))
}
}

127
ff/arith.go Normal file
View File

@@ -0,0 +1,127 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
import (
"math/bits"
"golang.org/x/sys/cpu"
)
var supportAdx = cpu.X86.HasADX && cpu.X86.HasBMI2
func madd(a, b, t, u, v uint64) (uint64, uint64, uint64) {
var carry uint64
hi, lo := bits.Mul64(a, b)
v, carry = bits.Add64(lo, v, 0)
u, carry = bits.Add64(hi, u, carry)
t, _ = bits.Add64(t, 0, carry)
return t, u, v
}
// madd0 hi = a*b + c (discards lo bits)
func madd0(a, b, c uint64) (hi uint64) {
var carry, lo uint64
hi, lo = bits.Mul64(a, b)
_, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
// madd1 hi, lo = a*b + c
func madd1(a, b, c uint64) (hi uint64, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
// madd2 hi, lo = a*b + c + d
func madd2(a, b, c, d uint64) (hi uint64, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
c, carry = bits.Add64(c, d, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
// madd2s superhi, hi, lo = 2*a*b + c + d + e
func madd2s(a, b, c, d, e uint64) (superhi, hi, lo uint64) {
var carry, sum uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
sum, carry = bits.Add64(c, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, sum, 0)
hi, _ = bits.Add64(hi, 0, carry)
hi, _ = bits.Add64(hi, 0, d)
return
}
func madd1s(a, b, d, e uint64) (superhi, hi, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
lo, carry = bits.Add64(lo, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
hi, _ = bits.Add64(hi, 0, d)
return
}
func madd2sb(a, b, c, e uint64) (superhi, hi, lo uint64) {
var carry, sum uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
sum, carry = bits.Add64(c, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, sum, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
func madd1sb(a, b, e uint64) (superhi, hi, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
lo, carry = bits.Add64(lo, lo, 0)
hi, superhi = bits.Add64(hi, hi, carry)
lo, carry = bits.Add64(lo, e, 0)
hi, _ = bits.Add64(hi, 0, carry)
return
}
func madd3(a, b, c, d, e uint64) (hi uint64, lo uint64) {
var carry uint64
hi, lo = bits.Mul64(a, b)
c, carry = bits.Add64(c, d, 0)
hi, _ = bits.Add64(hi, 0, carry)
lo, carry = bits.Add64(lo, c, 0)
hi, _ = bits.Add64(hi, e, carry)
return
}

754
ff/element.go Normal file
View File

@@ -0,0 +1,754 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import (
"crypto/rand"
"encoding/binary"
"io"
"math/big"
"math/bits"
"strconv"
"sync"
"unsafe"
)
// Element represents a field element stored on 4 words (uint64)
// Element are assumed to be in Montgomery form in all methods
// field modulus q =
//
// 21888242871839275222246405745257275088548364400416034343698204186575808495617
type Element [4]uint64
// ElementLimbs number of 64 bits words needed to represent Element
const ElementLimbs = 4
// ElementBits number bits needed to represent Element
const ElementBits = 254
// SetUint64 z = v, sets z LSB to v (non-Montgomery form) and convert z to Montgomery form
func (z *Element) SetUint64(v uint64) *Element {
z[0] = v
z[1] = 0
z[2] = 0
z[3] = 0
return z.ToMont()
}
// Set z = x
func (z *Element) Set(x *Element) *Element {
z[0] = x[0]
z[1] = x[1]
z[2] = x[2]
z[3] = x[3]
return z
}
// SetZero z = 0
func (z *Element) SetZero() *Element {
z[0] = 0
z[1] = 0
z[2] = 0
z[3] = 0
return z
}
// SetOne z = 1 (in Montgomery form)
func (z *Element) SetOne() *Element {
z[0] = 12436184717236109307
z[1] = 3962172157175319849
z[2] = 7381016538464732718
z[3] = 1011752739694698287
return z
}
// Neg z = q - x
func (z *Element) Neg(x *Element) *Element {
if x.IsZero() {
return z.SetZero()
}
var borrow uint64
z[0], borrow = bits.Sub64(4891460686036598785, x[0], 0)
z[1], borrow = bits.Sub64(2896914383306846353, x[1], borrow)
z[2], borrow = bits.Sub64(13281191951274694749, x[2], borrow)
z[3], _ = bits.Sub64(3486998266802970665, x[3], borrow)
return z
}
// Div z = x*y^-1 mod q
func (z *Element) Div(x, y *Element) *Element {
var yInv Element
yInv.Inverse(y)
z.Mul(x, &yInv)
return z
}
// Equal returns z == x
func (z *Element) Equal(x *Element) bool {
return (z[3] == x[3]) && (z[2] == x[2]) && (z[1] == x[1]) && (z[0] == x[0])
}
// IsZero returns z == 0
func (z *Element) IsZero() bool {
return (z[3] | z[2] | z[1] | z[0]) == 0
}
// field modulus stored as big.Int
var _elementModulusBigInt big.Int
var onceelementModulus sync.Once
func elementModulusBigInt() *big.Int {
onceelementModulus.Do(func() {
_elementModulusBigInt.SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
})
return &_elementModulusBigInt
}
// Inverse z = x^-1 mod q
// Algorithm 16 in "Efficient Software-Implementation of Finite Fields with Applications to Cryptography"
// if x == 0, sets and returns z = x
func (z *Element) Inverse(x *Element) *Element {
if x.IsZero() {
return z.Set(x)
}
// initialize u = q
var u = Element{
4891460686036598785,
2896914383306846353,
13281191951274694749,
3486998266802970665,
}
// initialize s = r^2
var s = Element{
1997599621687373223,
6052339484930628067,
10108755138030829701,
150537098327114917,
}
// r = 0
r := Element{}
v := *x
var carry, borrow, t, t2 uint64
var bigger, uIsOne, vIsOne bool
for !uIsOne && !vIsOne {
for v[0]&1 == 0 {
// v = v >> 1
t2 = v[3] << 63
v[3] >>= 1
t = t2
t2 = v[2] << 63
v[2] = (v[2] >> 1) | t
t = t2
t2 = v[1] << 63
v[1] = (v[1] >> 1) | t
t = t2
v[0] = (v[0] >> 1) | t
if s[0]&1 == 1 {
// s = s + q
s[0], carry = bits.Add64(s[0], 4891460686036598785, 0)
s[1], carry = bits.Add64(s[1], 2896914383306846353, carry)
s[2], carry = bits.Add64(s[2], 13281191951274694749, carry)
s[3], _ = bits.Add64(s[3], 3486998266802970665, carry)
}
// s = s >> 1
t2 = s[3] << 63
s[3] >>= 1
t = t2
t2 = s[2] << 63
s[2] = (s[2] >> 1) | t
t = t2
t2 = s[1] << 63
s[1] = (s[1] >> 1) | t
t = t2
s[0] = (s[0] >> 1) | t
}
for u[0]&1 == 0 {
// u = u >> 1
t2 = u[3] << 63
u[3] >>= 1
t = t2
t2 = u[2] << 63
u[2] = (u[2] >> 1) | t
t = t2
t2 = u[1] << 63
u[1] = (u[1] >> 1) | t
t = t2
u[0] = (u[0] >> 1) | t
if r[0]&1 == 1 {
// r = r + q
r[0], carry = bits.Add64(r[0], 4891460686036598785, 0)
r[1], carry = bits.Add64(r[1], 2896914383306846353, carry)
r[2], carry = bits.Add64(r[2], 13281191951274694749, carry)
r[3], _ = bits.Add64(r[3], 3486998266802970665, carry)
}
// r = r >> 1
t2 = r[3] << 63
r[3] >>= 1
t = t2
t2 = r[2] << 63
r[2] = (r[2] >> 1) | t
t = t2
t2 = r[1] << 63
r[1] = (r[1] >> 1) | t
t = t2
r[0] = (r[0] >> 1) | t
}
// v >= u
bigger = !(v[3] < u[3] || (v[3] == u[3] && (v[2] < u[2] || (v[2] == u[2] && (v[1] < u[1] || (v[1] == u[1] && (v[0] < u[0])))))))
if bigger {
// v = v - u
v[0], borrow = bits.Sub64(v[0], u[0], 0)
v[1], borrow = bits.Sub64(v[1], u[1], borrow)
v[2], borrow = bits.Sub64(v[2], u[2], borrow)
v[3], _ = bits.Sub64(v[3], u[3], borrow)
// r >= s
bigger = !(r[3] < s[3] || (r[3] == s[3] && (r[2] < s[2] || (r[2] == s[2] && (r[1] < s[1] || (r[1] == s[1] && (r[0] < s[0])))))))
if bigger {
// s = s + q
s[0], carry = bits.Add64(s[0], 4891460686036598785, 0)
s[1], carry = bits.Add64(s[1], 2896914383306846353, carry)
s[2], carry = bits.Add64(s[2], 13281191951274694749, carry)
s[3], _ = bits.Add64(s[3], 3486998266802970665, carry)
}
// s = s - r
s[0], borrow = bits.Sub64(s[0], r[0], 0)
s[1], borrow = bits.Sub64(s[1], r[1], borrow)
s[2], borrow = bits.Sub64(s[2], r[2], borrow)
s[3], _ = bits.Sub64(s[3], r[3], borrow)
} else {
// u = u - v
u[0], borrow = bits.Sub64(u[0], v[0], 0)
u[1], borrow = bits.Sub64(u[1], v[1], borrow)
u[2], borrow = bits.Sub64(u[2], v[2], borrow)
u[3], _ = bits.Sub64(u[3], v[3], borrow)
// s >= r
bigger = !(s[3] < r[3] || (s[3] == r[3] && (s[2] < r[2] || (s[2] == r[2] && (s[1] < r[1] || (s[1] == r[1] && (s[0] < r[0])))))))
if bigger {
// r = r + q
r[0], carry = bits.Add64(r[0], 4891460686036598785, 0)
r[1], carry = bits.Add64(r[1], 2896914383306846353, carry)
r[2], carry = bits.Add64(r[2], 13281191951274694749, carry)
r[3], _ = bits.Add64(r[3], 3486998266802970665, carry)
}
// r = r - s
r[0], borrow = bits.Sub64(r[0], s[0], 0)
r[1], borrow = bits.Sub64(r[1], s[1], borrow)
r[2], borrow = bits.Sub64(r[2], s[2], borrow)
r[3], _ = bits.Sub64(r[3], s[3], borrow)
}
uIsOne = (u[0] == 1) && (u[3]|u[2]|u[1]) == 0
vIsOne = (v[0] == 1) && (v[3]|v[2]|v[1]) == 0
}
if uIsOne {
z.Set(&r)
} else {
z.Set(&s)
}
return z
}
// SetRandom sets z to a random element < q
func (z *Element) SetRandom() *Element {
bytes := make([]byte, 32)
io.ReadFull(rand.Reader, bytes)
z[0] = binary.BigEndian.Uint64(bytes[0:8])
z[1] = binary.BigEndian.Uint64(bytes[8:16])
z[2] = binary.BigEndian.Uint64(bytes[16:24])
z[3] = binary.BigEndian.Uint64(bytes[24:32])
z[3] %= 3486998266802970665
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// One returns 1 (in montgommery form)
func One() Element {
var one Element
one.SetOne()
return one
}
// FromInterface converts i1 from uint64, int, string, or Element, big.Int into Element
// panic if provided type is not supported
func FromInterface(i1 interface{}) Element {
var val Element
switch c1 := i1.(type) {
case uint64:
val.SetUint64(c1)
case int:
val.SetString(strconv.Itoa(c1))
case string:
val.SetString(c1)
case big.Int:
val.SetBigInt(&c1)
case Element:
val = c1
case *Element:
val.Set(c1)
default:
panic("invalid type")
}
return val
}
// Add z = x + y mod q
func (z *Element) Add(x, y *Element) *Element {
var carry uint64
z[0], carry = bits.Add64(x[0], y[0], 0)
z[1], carry = bits.Add64(x[1], y[1], carry)
z[2], carry = bits.Add64(x[2], y[2], carry)
z[3], _ = bits.Add64(x[3], y[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// AddAssign z = z + x mod q
func (z *Element) AddAssign(x *Element) *Element {
var carry uint64
z[0], carry = bits.Add64(z[0], x[0], 0)
z[1], carry = bits.Add64(z[1], x[1], carry)
z[2], carry = bits.Add64(z[2], x[2], carry)
z[3], _ = bits.Add64(z[3], x[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// Double z = x + x mod q, aka Lsh 1
func (z *Element) Double(x *Element) *Element {
var carry uint64
z[0], carry = bits.Add64(x[0], x[0], 0)
z[1], carry = bits.Add64(x[1], x[1], carry)
z[2], carry = bits.Add64(x[2], x[2], carry)
z[3], _ = bits.Add64(x[3], x[3], carry)
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// Sub z = x - y mod q
func (z *Element) Sub(x, y *Element) *Element {
var b uint64
z[0], b = bits.Sub64(x[0], y[0], 0)
z[1], b = bits.Sub64(x[1], y[1], b)
z[2], b = bits.Sub64(x[2], y[2], b)
z[3], b = bits.Sub64(x[3], y[3], b)
if b != 0 {
var c uint64
z[0], c = bits.Add64(z[0], 4891460686036598785, 0)
z[1], c = bits.Add64(z[1], 2896914383306846353, c)
z[2], c = bits.Add64(z[2], 13281191951274694749, c)
z[3], _ = bits.Add64(z[3], 3486998266802970665, c)
}
return z
}
// SubAssign z = z - x mod q
func (z *Element) SubAssign(x *Element) *Element {
var b uint64
z[0], b = bits.Sub64(z[0], x[0], 0)
z[1], b = bits.Sub64(z[1], x[1], b)
z[2], b = bits.Sub64(z[2], x[2], b)
z[3], b = bits.Sub64(z[3], x[3], b)
if b != 0 {
var c uint64
z[0], c = bits.Add64(z[0], 4891460686036598785, 0)
z[1], c = bits.Add64(z[1], 2896914383306846353, c)
z[2], c = bits.Add64(z[2], 13281191951274694749, c)
z[3], _ = bits.Add64(z[3], 3486998266802970665, c)
}
return z
}
// Exp z = x^exponent mod q
// (not optimized)
// exponent (non-montgomery form) is ordered from least significant word to most significant word
func (z *Element) Exp(x Element, exponent ...uint64) *Element {
r := 0
msb := 0
for i := len(exponent) - 1; i >= 0; i-- {
if exponent[i] == 0 {
r++
} else {
msb = (i * 64) + bits.Len64(exponent[i])
break
}
}
exponent = exponent[:len(exponent)-r]
if len(exponent) == 0 {
return z.SetOne()
}
z.Set(&x)
l := msb - 2
for i := l; i >= 0; i-- {
z.Square(z)
if exponent[i/64]&(1<<uint(i%64)) != 0 {
z.MulAssign(&x)
}
}
return z
}
// FromMont converts z in place (i.e. mutates) from Montgomery to regular representation
// sets and returns z = z * 1
func (z *Element) FromMont() *Element {
// the following lines implement z = z * 1
// with a modified CIOS montgomery multiplication
{
// m = z[0]n'[0] mod W
m := z[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, z[0])
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
z[3] = C
}
{
// m = z[0]n'[0] mod W
m := z[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, z[0])
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
z[3] = C
}
{
// m = z[0]n'[0] mod W
m := z[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, z[0])
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
z[3] = C
}
{
// m = z[0]n'[0] mod W
m := z[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, z[0])
C, z[0] = madd2(m, 2896914383306846353, z[1], C)
C, z[1] = madd2(m, 13281191951274694749, z[2], C)
C, z[2] = madd2(m, 3486998266802970665, z[3], C)
z[3] = C
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// ToMont converts z to Montgomery form
// sets and returns z = z * r^2
func (z *Element) ToMont() *Element {
var rSquare = Element{
1997599621687373223,
6052339484930628067,
10108755138030829701,
150537098327114917,
}
return z.MulAssign(&rSquare)
}
// ToRegular returns z in regular form (doesn't mutate z)
func (z Element) ToRegular() Element {
return *z.FromMont()
}
// String returns the string form of an Element in Montgomery form
func (z *Element) String() string {
var _z big.Int
return z.ToBigIntRegular(&_z).String()
}
// ToBigInt returns z as a big.Int in Montgomery form
func (z *Element) ToBigInt(res *big.Int) *big.Int {
if bits.UintSize == 64 {
bits := (*[4]big.Word)(unsafe.Pointer(z))
return res.SetBits(bits[:])
} else {
var bits [8]big.Word
for i := 0; i < len(z); i++ {
bits[i*2] = big.Word(z[i])
bits[i*2+1] = big.Word(z[i] >> 32)
}
return res.SetBits(bits[:])
}
}
// ToBigIntRegular returns z as a big.Int in regular form
func (z Element) ToBigIntRegular(res *big.Int) *big.Int {
z.FromMont()
if bits.UintSize == 64 {
bits := (*[4]big.Word)(unsafe.Pointer(&z))
return res.SetBits(bits[:])
} else {
var bits [8]big.Word
for i := 0; i < len(z); i++ {
bits[i*2] = big.Word(z[i])
bits[i*2+1] = big.Word(z[i] >> 32)
}
return res.SetBits(bits[:])
}
}
// SetBigInt sets z to v (regular form) and returns z in Montgomery form
func (z *Element) SetBigInt(v *big.Int) *Element {
z.SetZero()
zero := big.NewInt(0)
q := elementModulusBigInt()
// fast path
c := v.Cmp(q)
if c == 0 {
return z
} else if c != 1 && v.Cmp(zero) != -1 {
// v should
vBits := v.Bits()
for i := 0; i < len(vBits); i++ {
z[i] = uint64(vBits[i])
}
return z.ToMont()
}
// copy input
vv := new(big.Int).Set(v)
// while v < 0, v+=q
for vv.Cmp(zero) == -1 {
vv.Add(vv, q)
}
// while v > q, v-=q
for vv.Cmp(q) == 1 {
vv.Sub(vv, q)
}
// if v == q, return 0
if vv.Cmp(q) == 0 {
return z
}
// v should
vBits := vv.Bits()
if bits.UintSize == 64 {
for i := 0; i < len(vBits); i++ {
z[i] = uint64(vBits[i])
}
} else {
for i := 0; i < len(vBits); i++ {
if i%2 == 0 {
z[i/2] = uint64(vBits[i])
} else {
z[i/2] |= uint64(vBits[i]) << 32
}
}
}
return z.ToMont()
}
// SetString creates a big.Int with s (in base 10) and calls SetBigInt on z
func (z *Element) SetString(s string) *Element {
x, ok := new(big.Int).SetString(s, 10)
if !ok {
panic("Element.SetString failed -> can't parse number in base10 into a big.Int")
}
return z.SetBigInt(x)
}
// Legendre returns the Legendre symbol of z (either +1, -1, or 0.)
func (z *Element) Legendre() int {
var l Element
// z^((q-1)/2)
l.Exp(*z,
11669102379873075200,
10671829228508198984,
15863968012492123182,
1743499133401485332,
)
if l.IsZero() {
return 0
}
// if l == 1
if (l[3] == 1011752739694698287) && (l[2] == 7381016538464732718) && (l[1] == 3962172157175319849) && (l[0] == 12436184717236109307) {
return 1
}
return -1
}
// Sqrt z = √x mod q
// if the square root doesn't exist (x is not a square mod q)
// Sqrt leaves z unchanged and returns nil
func (z *Element) Sqrt(x *Element) *Element {
// q ≡ 1 (mod 4)
// see modSqrtTonelliShanks in math/big/int.go
// using https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf
var y, b, t, w Element
// w = x^((s-1)/2))
w.Exp(*x,
14829091926808964255,
867720185306366531,
688207751544974772,
6495040407,
)
// y = x^((s+1)/2)) = w * x
y.Mul(x, &w)
// b = x^s = w * w * x = y * x
b.Mul(&w, &y)
// g = nonResidue ^ s
var g = Element{
7164790868263648668,
11685701338293206998,
6216421865291908056,
1756667274303109607,
}
r := uint64(28)
// compute legendre symbol
// t = x^((q-1)/2) = r-1 squaring of x^s
t = b
for i := uint64(0); i < r-1; i++ {
t.Square(&t)
}
if t.IsZero() {
return z.SetZero()
}
if !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
// t != 1, we don't have a square root
return nil
}
for {
var m uint64
t = b
// for t != 1
for !((t[3] == 1011752739694698287) && (t[2] == 7381016538464732718) && (t[1] == 3962172157175319849) && (t[0] == 12436184717236109307)) {
t.Square(&t)
m++
}
if m == 0 {
return z.Set(&y)
}
// t = g^(2^(r-m-1)) mod q
ge := int(r - m - 1)
t = g
for ge > 0 {
t.Square(&t)
ge--
}
g.Square(&t)
y.MulAssign(&t)
b.MulAssign(&g)
r = m
}
}

170
ff/element_mul.go Normal file
View File

@@ -0,0 +1,170 @@
// +build !amd64
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import "math/bits"
// Mul z = x * y mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Mul(x, y *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := x[0]
c[1], c[0] = bits.Mul64(v, y[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, y[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, y[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, y[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := x[1]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := x[2]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := x[3]
c[1], c[0] = madd1(v, y[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, y[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, y[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, y[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// MulAssign z = z * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) MulAssign(x *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

39
ff/element_mul_amd64.go Normal file
View File

@@ -0,0 +1,39 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// MulAssignElement z = z * x mod q (constant time)
// calling this instead of z.MulAssign(x) is prefered for performance critical path
//go:noescape
func MulAssignElement(res, y *Element)
// Mul z = x * y mod q (constant time)
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Mul(x, y *Element) *Element {
res := *x
MulAssignElement(&res, y)
z.Set(&res)
return z
}
// MulAssign z = z * x mod q (constant time)
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) MulAssign(x *Element) *Element {
MulAssignElement(z, x)
return z
}

695
ff/element_mul_amd64.s Normal file
View File

@@ -0,0 +1,695 @@
// Code generated by goff (v0.2.0) DO NOT EDIT
#include "textflag.h"
// func MulAssignElement(res,y *Element)
// montgomery multiplication of res by y
// stores the result in res
TEXT ·MulAssignElement(SB), NOSPLIT, $0-16
// dereference our parameters
MOVQ res+0(FP), DI
MOVQ y+8(FP), R8
// check if we support adx and mulx
CMPB ·supportAdx(SB), $1
JNE no_adx
// the algorithm is described here
// https://hackmd.io/@zkteam/modular_multiplication
// however, to benefit from the ADCX and ADOX carry chains
// we split the inner loops in 2:
// for i=0 to N-1
// for j=0 to N-1
// (A,t[j]) := t[j] + a[j]*b[i] + A
// m := t[0]*q'[0] mod W
// C,_ := t[0] + m*q[0]
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
// t[N-1] = C + A
// ---------------------------------------------------------------------------------------------
// outter loop 0
// clear up the carry flags
XORQ R9 , R9
// R12 = y[0]
MOVQ 0(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, CX , R9
// DX = res[1]
MOVQ 8(DI), DX
MOVQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
MOVQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
MOVQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 1
// clear up the carry flags
XORQ R9 , R9
// R12 = y[1]
MOVQ 8(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 2
// clear up the carry flags
XORQ R9 , R9
// R12 = y[2]
MOVQ 16(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 3
// clear up the carry flags
XORQ R9 , R9
// R12 = y[3]
MOVQ 24(R8), R12
// for j=0 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// DX = res[0]
MOVQ 0(DI), DX
MULXQ R12, AX, R9
ADOXQ AX, CX
// DX = res[1]
MOVQ 8(DI), DX
ADCXQ R9, BX
MULXQ R12, AX, R9
ADOXQ AX, BX
// DX = res[2]
MOVQ 16(DI), DX
ADCXQ R9, BP
MULXQ R12, AX, R9
ADOXQ AX, BP
// DX = res[3]
MOVQ 24(DI), DX
ADCXQ R9, SI
MULXQ R12, AX, R9
ADOXQ AX, SI
// add the last carries to R9
MOVQ $0, DX
ADCXQ DX, R9
ADOXQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, DX
MULXQ CX,R11, DX
// clear the carry flags
XORQ DX, DX
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, DX
MULXQ R11, AX, R10
ADCXQ CX ,AX
// for j=1 to N-1
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ $0x2833e84879b97091, DX
MULXQ R11, AX, DX
ADCXQ BX, R10
ADOXQ AX, R10
MOVQ R10, CX
MOVQ DX, R10
MOVQ $0xb85045b68181585d, DX
MULXQ R11, AX, DX
ADCXQ BP, R10
ADOXQ AX, R10
MOVQ R10, BX
MOVQ DX, R10
MOVQ $0x30644e72e131a029, DX
MULXQ R11, AX, DX
ADCXQ SI, R10
ADOXQ AX, R10
MOVQ R10, BP
MOVQ $0, AX
ADCXQ AX, DX
ADOXQ DX, R9
MOVQ R9, SI
reduce:
// reduce, constant time version
// first we copy registers storing t in a separate set of registers
// as SUBQ modifies the 2nd operand
MOVQ CX, DX
MOVQ BX, R8
MOVQ BP, R9
MOVQ SI, R10
MOVQ $0x43e1f593f0000001, R11
SUBQ R11, DX
MOVQ $0x2833e84879b97091, R11
SBBQ R11, R8
MOVQ $0xb85045b68181585d, R11
SBBQ R11, R9
MOVQ $0x30644e72e131a029, R11
SBBQ R11, R10
JCS t_is_smaller // no borrow, we return t
// borrow is set, we return u
MOVQ DX, (DI)
MOVQ R8, 8(DI)
MOVQ R9, 16(DI)
MOVQ R10, 24(DI)
RET
t_is_smaller:
MOVQ CX, 0(DI)
MOVQ BX, 8(DI)
MOVQ BP, 16(DI)
MOVQ SI, 24(DI)
RET
no_adx:
// ---------------------------------------------------------------------------------------------
// outter loop 0
// (A,t[0]) := t[0] + x[0]*y[0]
MOVQ (DI), AX // x[0]
MOVQ 0(R8), R12
MULQ R12 // x[0] * y[0]
MOVQ DX, R9
MOVQ AX, CX
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[0]
MOVQ R9, BX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[0]
MOVQ R9, BP
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[0]
MOVQ R9, SI
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 1
// (A,t[0]) := t[0] + x[0]*y[1]
MOVQ (DI), AX // x[0]
MOVQ 8(R8), R12
MULQ R12 // x[0] * y[1]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[1]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[1]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[1]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 2
// (A,t[0]) := t[0] + x[0]*y[2]
MOVQ (DI), AX // x[0]
MOVQ 16(R8), R12
MULQ R12 // x[0] * y[2]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[2]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[2]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[2]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
// ---------------------------------------------------------------------------------------------
// outter loop 3
// (A,t[0]) := t[0] + x[0]*y[3]
MOVQ (DI), AX // x[0]
MOVQ 24(R8), R12
MULQ R12 // x[0] * y[3]
ADDQ AX, CX
ADCQ $0, DX
MOVQ DX, R9
// m := t[0]*q'[0] mod W
MOVQ $0xc2e1f593efffffff, R11
IMULQ CX , R11
// C,_ := t[0] + m*q[0]
MOVQ $0x43e1f593f0000001, AX
MULQ R11
ADDQ CX ,AX
ADCQ $0, DX
MOVQ DX, R10
// for j=1 to N-1
// (A,t[j]) := t[j] + x[j]*y[i] + A
// (C,t[j-1]) := t[j] + m*q[j] + C
MOVQ 8(DI), AX
MULQ R12 // x[1] * y[3]
ADDQ R9, BX
ADCQ $0, DX
ADDQ AX, BX
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x2833e84879b97091, AX
MULQ R11
ADDQ BX, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, CX
MOVQ DX, R10
MOVQ 16(DI), AX
MULQ R12 // x[2] * y[3]
ADDQ R9, BP
ADCQ $0, DX
ADDQ AX, BP
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0xb85045b68181585d, AX
MULQ R11
ADDQ BP, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BX
MOVQ DX, R10
MOVQ 24(DI), AX
MULQ R12 // x[3] * y[3]
ADDQ R9, SI
ADCQ $0, DX
ADDQ AX, SI
ADCQ $0, DX
MOVQ DX, R9
MOVQ $0x30644e72e131a029, AX
MULQ R11
ADDQ SI, R10
ADCQ $0, DX
ADDQ AX, R10
ADCQ $0, DX
MOVQ R10, BP
MOVQ DX, R10
ADDQ R10, R9
MOVQ R9, SI
JMP reduce

93
ff/element_square.go Normal file
View File

@@ -0,0 +1,93 @@
// +build !amd64
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// /!\ WARNING /!\
// this code has not been audited and is provided as-is. In particular,
// there is no security guarantees such as constant time implementation
// or side-channel attack resistance
// /!\ WARNING /!\
import "math/bits"
// Square z = x * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Square(x *Element) *Element {
var p [4]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

View File

@@ -0,0 +1,34 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
// SquareElement z = x * x mod q
// calling this instead of z.Square(x) is prefered for performance critical path
// go - noescape
// func SquareElement(res,x *Element)
// Square z = x * x mod q
// see https://hackmd.io/@zkteam/modular_multiplication
func (z *Element) Square(x *Element) *Element {
if z != x {
z.Set(x)
}
MulAssignElement(z, x)
// SquareElement(z, x)
return z
}

474
ff/element_test.go Normal file
View File

@@ -0,0 +1,474 @@
// Copyright 2020 ConsenSys AG
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Code generated by goff (v0.2.0) DO NOT EDIT
// Package ff contains field arithmetic operations
package ff
import (
"crypto/rand"
"math/big"
"math/bits"
mrand "math/rand"
"testing"
)
func TestELEMENTCorrectnessAgainstBigInt(t *testing.T) {
modulus, _ := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
cmpEandB := func(e *Element, b *big.Int, name string) {
var _e big.Int
if e.FromMont().ToBigInt(&_e).Cmp(b) != 0 {
t.Fatal(name, "failed")
}
}
var modulusMinusOne, one big.Int
one.SetUint64(1)
modulusMinusOne.Sub(modulus, &one)
var n int
if testing.Short() {
n = 10
} else {
n = 500
}
for i := 0; i < n; i++ {
// sample 2 random big int
b1, _ := rand.Int(rand.Reader, modulus)
b2, _ := rand.Int(rand.Reader, modulus)
rExp := mrand.Uint64()
// adding edge cases
// TODO need more edge cases
switch i {
case 0:
rExp = 0
b1.SetUint64(0)
case 1:
b2.SetUint64(0)
case 2:
b1.SetUint64(0)
b2.SetUint64(0)
case 3:
rExp = 0
case 4:
rExp = 1
case 5:
rExp = ^uint64(0) // max uint
case 6:
rExp = 2
b1.Set(&modulusMinusOne)
case 7:
b2.Set(&modulusMinusOne)
case 8:
b1.Set(&modulusMinusOne)
b2.Set(&modulusMinusOne)
}
rbExp := new(big.Int).SetUint64(rExp)
var bMul, bAdd, bSub, bDiv, bNeg, bLsh, bInv, bExp, bExp2, bSquare big.Int
// e1 = mont(b1), e2 = mont(b2)
var e1, e2, eMul, eAdd, eSub, eDiv, eNeg, eLsh, eInv, eExp, eSquare, eMulAssign, eSubAssign, eAddAssign Element
e1.SetBigInt(b1)
e2.SetBigInt(b2)
// (e1*e2).FromMont() === b1*b2 mod q ... etc
eSquare.Square(&e1)
eMul.Mul(&e1, &e2)
eMulAssign.Set(&e1)
eMulAssign.MulAssign(&e2)
eAdd.Add(&e1, &e2)
eAddAssign.Set(&e1)
eAddAssign.AddAssign(&e2)
eSub.Sub(&e1, &e2)
eSubAssign.Set(&e1)
eSubAssign.SubAssign(&e2)
eDiv.Div(&e1, &e2)
eNeg.Neg(&e1)
eInv.Inverse(&e1)
eExp.Exp(e1, rExp)
eLsh.Double(&e1)
// same operations with big int
bAdd.Add(b1, b2).Mod(&bAdd, modulus)
bMul.Mul(b1, b2).Mod(&bMul, modulus)
bSquare.Mul(b1, b1).Mod(&bSquare, modulus)
bSub.Sub(b1, b2).Mod(&bSub, modulus)
bDiv.ModInverse(b2, modulus)
bDiv.Mul(&bDiv, b1).
Mod(&bDiv, modulus)
bNeg.Neg(b1).Mod(&bNeg, modulus)
bInv.ModInverse(b1, modulus)
bExp.Exp(b1, rbExp, modulus)
bLsh.Lsh(b1, 1).Mod(&bLsh, modulus)
cmpEandB(&eSquare, &bSquare, "Square")
cmpEandB(&eMul, &bMul, "Mul")
cmpEandB(&eMulAssign, &bMul, "MulAssign")
cmpEandB(&eAdd, &bAdd, "Add")
cmpEandB(&eAddAssign, &bAdd, "AddAssign")
cmpEandB(&eSub, &bSub, "Sub")
cmpEandB(&eSubAssign, &bSub, "SubAssign")
cmpEandB(&eDiv, &bDiv, "Div")
cmpEandB(&eNeg, &bNeg, "Neg")
cmpEandB(&eInv, &bInv, "Inv")
cmpEandB(&eExp, &bExp, "Exp")
cmpEandB(&eLsh, &bLsh, "Lsh")
// legendre symbol
if e1.Legendre() != big.Jacobi(b1, modulus) {
t.Fatal("legendre symbol computation failed")
}
if e2.Legendre() != big.Jacobi(b2, modulus) {
t.Fatal("legendre symbol computation failed")
}
// these are slow, killing circle ci
if n <= 5 {
// sqrt
var eSqrt, eExp2 Element
var bSqrt big.Int
bSqrt.ModSqrt(b1, modulus)
eSqrt.Sqrt(&e1)
cmpEandB(&eSqrt, &bSqrt, "Sqrt")
bits := b2.Bits()
exponent := make([]uint64, len(bits))
for k := 0; k < len(bits); k++ {
exponent[k] = uint64(bits[k])
}
eExp2.Exp(e1, exponent...)
bExp2.Exp(b1, b2, modulus)
cmpEandB(&eExp2, &bExp2, "Exp multi words")
}
}
}
func TestELEMENTIsRandom(t *testing.T) {
for i := 0; i < 50; i++ {
var x, y Element
x.SetRandom()
y.SetRandom()
if x.Equal(&y) {
t.Fatal("2 random numbers are unlikely to be equal")
}
}
}
// -------------------------------------------------------------------------------------------------
// benchmarks
// most benchmarks are rudimentary and should sample a large number of random inputs
// or be run multiple times to ensure it didn't measure the fastest path of the function
var benchResElement Element
func BenchmarkInverseELEMENT(b *testing.B) {
var x Element
x.SetRandom()
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Inverse(&x)
}
}
func BenchmarkExpELEMENT(b *testing.B) {
var x Element
x.SetRandom()
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Exp(x, mrand.Uint64())
}
}
func BenchmarkDoubleELEMENT(b *testing.B) {
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Double(&benchResElement)
}
}
func BenchmarkAddELEMENT(b *testing.B) {
var x Element
x.SetRandom()
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Add(&x, &benchResElement)
}
}
func BenchmarkSubELEMENT(b *testing.B) {
var x Element
x.SetRandom()
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Sub(&x, &benchResElement)
}
}
func BenchmarkNegELEMENT(b *testing.B) {
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Neg(&benchResElement)
}
}
func BenchmarkDivELEMENT(b *testing.B) {
var x Element
x.SetRandom()
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Div(&x, &benchResElement)
}
}
func BenchmarkFromMontELEMENT(b *testing.B) {
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.FromMont()
}
}
func BenchmarkToMontELEMENT(b *testing.B) {
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.ToMont()
}
}
func BenchmarkSquareELEMENT(b *testing.B) {
benchResElement.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Square(&benchResElement)
}
}
func BenchmarkSqrtELEMENT(b *testing.B) {
var a Element
a.SetRandom()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.Sqrt(&a)
}
}
func BenchmarkMulAssignELEMENT(b *testing.B) {
x := Element{
1997599621687373223,
6052339484930628067,
10108755138030829701,
150537098327114917,
}
benchResElement.SetOne()
b.ResetTimer()
for i := 0; i < b.N; i++ {
benchResElement.MulAssign(&x)
}
}
func BenchmarkMulAssignASMELEMENT(b *testing.B) {
x := Element{
1997599621687373223,
6052339484930628067,
10108755138030829701,
150537098327114917,
}
benchResElement.SetOne()
b.ResetTimer()
for i := 0; i < b.N; i++ {
MulAssignElement(&benchResElement, &x)
}
}
func TestELEMENTAsm(t *testing.T) {
// ensure ASM implementations matches the ones using math/bits
modulus, _ := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
for i := 0; i < 500; i++ {
// sample 2 random big int
b1, _ := rand.Int(rand.Reader, modulus)
b2, _ := rand.Int(rand.Reader, modulus)
// e1 = mont(b1), e2 = mont(b2)
var e1, e2, eTestMul, eMulAssign, eSquare, eTestSquare Element
e1.SetBigInt(b1)
e2.SetBigInt(b2)
eTestMul = e1
eTestMul.testMulAssign(&e2)
eMulAssign = e1
eMulAssign.MulAssign(&e2)
if !eTestMul.Equal(&eMulAssign) {
t.Fatal("inconsisntencies between MulAssign and testMulAssign --> check if MulAssign is calling ASM implementaiton on amd64")
}
// square
eSquare.Square(&e1)
eTestSquare.testSquare(&e1)
if !eTestSquare.Equal(&eSquare) {
t.Fatal("inconsisntencies between Square and testSquare --> check if Square is calling ASM implementaiton on amd64")
}
}
}
// this is here for consistency purposes, to ensure MulAssign on AMD64 using asm implementation gives consistent results
func (z *Element) testMulAssign(x *Element) *Element {
var t [4]uint64
var c [3]uint64
{
// round 0
v := z[0]
c[1], c[0] = bits.Mul64(v, x[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd1(v, x[1], c[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd1(v, x[2], c[1])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd1(v, x[3], c[1])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 1
v := z[1]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 2
v := z[2]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], t[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], t[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
t[3], t[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
{
// round 3
v := z[3]
c[1], c[0] = madd1(v, x[0], t[0])
m := c[0] * 14042775128853446655
c[2] = madd0(m, 4891460686036598785, c[0])
c[1], c[0] = madd2(v, x[1], c[1], t[1])
c[2], z[0] = madd2(m, 2896914383306846353, c[2], c[0])
c[1], c[0] = madd2(v, x[2], c[1], t[2])
c[2], z[1] = madd2(m, 13281191951274694749, c[2], c[0])
c[1], c[0] = madd2(v, x[3], c[1], t[3])
z[3], z[2] = madd3(m, 3486998266802970665, c[0], c[2], c[1])
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}
// this is here for consistency purposes, to ensure Square on AMD64 using asm implementation gives consistent results
func (z *Element) testSquare(x *Element) *Element {
var p [4]uint64
var u, v uint64
{
// round 0
u, p[0] = bits.Mul64(x[0], x[0])
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
var t uint64
t, u, v = madd1sb(x[0], x[1], u)
C, p[0] = madd2(m, 2896914383306846353, v, C)
t, u, v = madd1s(x[0], x[2], t, u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd1s(x[0], x[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 1
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
u, v = madd1(x[1], x[1], p[1])
C, p[0] = madd2(m, 2896914383306846353, v, C)
var t uint64
t, u, v = madd2sb(x[1], x[2], p[2], u)
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2s(x[1], x[3], p[3], t, u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 2
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, p[0] = madd2(m, 2896914383306846353, p[1], C)
u, v = madd1(x[2], x[2], p[2])
C, p[1] = madd2(m, 13281191951274694749, v, C)
_, u, v = madd2sb(x[2], x[3], p[3], u)
p[3], p[2] = madd3(m, 3486998266802970665, v, C, u)
}
{
// round 3
m := p[0] * 14042775128853446655
C := madd0(m, 4891460686036598785, p[0])
C, z[0] = madd2(m, 2896914383306846353, p[1], C)
C, z[1] = madd2(m, 13281191951274694749, p[2], C)
u, v = madd1(x[3], x[3], p[3])
z[3], z[2] = madd3(m, 3486998266802970665, v, C, u)
}
// if z > q --> z -= q
// note: this is NOT constant time
if !(z[3] < 3486998266802970665 || (z[3] == 3486998266802970665 && (z[2] < 13281191951274694749 || (z[2] == 13281191951274694749 && (z[1] < 2896914383306846353 || (z[1] == 2896914383306846353 && (z[0] < 4891460686036598785))))))) {
var b uint64
z[0], b = bits.Sub64(z[0], 4891460686036598785, 0)
z[1], b = bits.Sub64(z[1], 2896914383306846353, b)
z[2], b = bits.Sub64(z[2], 13281191951274694749, b)
z[3], _ = bits.Sub64(z[3], 3486998266802970665, b)
}
return z
}

5
ff/util.go Normal file
View File

@@ -0,0 +1,5 @@
package ff
func NewElement() *Element {
return &Element{}
}

View File

@@ -1,152 +0,0 @@
// code originally taken from https://github.com/arnaucube/go-snark (https://github.com/arnaucube/go-snark/blob/master/fields/fq.go), pasted here to ensure compatibility among future changes
package field
import (
"bytes"
"crypto/rand"
"math/big"
)
// Fq is the Z field over modulus Q
type Fq struct {
Q *big.Int // Q
}
// NewFq generates a new Fq
func NewFq(q *big.Int) Fq {
return Fq{
q,
}
}
// Zero returns a Zero value on the Fq
func (fq Fq) Zero() *big.Int {
return big.NewInt(int64(0))
}
// One returns a One value on the Fq
func (fq Fq) One() *big.Int {
return big.NewInt(int64(1))
}
// Add performs an addition on the Fq
func (fq Fq) Add(a, b *big.Int) *big.Int {
r := new(big.Int).Add(a, b)
return new(big.Int).Mod(r, fq.Q)
}
// Double performs a doubling on the Fq
func (fq Fq) Double(a *big.Int) *big.Int {
r := new(big.Int).Add(a, a)
return new(big.Int).Mod(r, fq.Q)
}
// Sub performs a subtraction on the Fq
func (fq Fq) Sub(a, b *big.Int) *big.Int {
r := new(big.Int).Sub(a, b)
return new(big.Int).Mod(r, fq.Q)
}
// Neg performs a negation on the Fq
func (fq Fq) Neg(a *big.Int) *big.Int {
m := new(big.Int).Neg(a)
return new(big.Int).Mod(m, fq.Q)
}
// Mul performs a multiplication on the Fq
func (fq Fq) Mul(a, b *big.Int) *big.Int {
m := new(big.Int).Mul(a, b)
return new(big.Int).Mod(m, fq.Q)
}
func (fq Fq) MulScalar(base, e *big.Int) *big.Int {
return fq.Mul(base, e)
}
// Inverse returns the inverse on the Fq
func (fq Fq) Inverse(a *big.Int) *big.Int {
return new(big.Int).ModInverse(a, fq.Q)
}
// Div performs the division over the finite field
func (fq Fq) Div(a, b *big.Int) *big.Int {
d := fq.Mul(a, fq.Inverse(b))
return new(big.Int).Mod(d, fq.Q)
}
// Square performs a square operation on the Fq
func (fq Fq) Square(a *big.Int) *big.Int {
m := new(big.Int).Mul(a, a)
return new(big.Int).Mod(m, fq.Q)
}
// Exp performs the exponential over Fq
func (fq Fq) Exp(base *big.Int, e *big.Int) *big.Int {
res := fq.One()
rem := fq.Copy(e)
exp := base
for !bytes.Equal(rem.Bytes(), big.NewInt(int64(0)).Bytes()) {
if BigIsOdd(rem) {
res = fq.Mul(res, exp)
}
exp = fq.Square(exp)
rem = new(big.Int).Rsh(rem, 1)
}
return res
}
func (fq Fq) Rand() (*big.Int, error) {
maxbits := fq.Q.BitLen()
b := make([]byte, (maxbits/8)-1)
_, err := rand.Read(b)
if err != nil {
return nil, err
}
r := new(big.Int).SetBytes(b)
rq := new(big.Int).Mod(r, fq.Q)
// r over q, nil
return rq, nil
}
func (fq Fq) IsZero(a *big.Int) bool {
return bytes.Equal(a.Bytes(), fq.Zero().Bytes())
}
func (fq Fq) Copy(a *big.Int) *big.Int {
return new(big.Int).SetBytes(a.Bytes())
}
func (fq Fq) Affine(a *big.Int) *big.Int {
nq := fq.Neg(fq.Q)
aux := a
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
if aux.Cmp(nq) != 1 { // aux less or equal nq
aux = new(big.Int).Mod(aux, fq.Q)
}
if aux.Cmp(big.NewInt(int64(0))) == -1 { // negative value
aux = new(big.Int).Add(aux, fq.Q)
}
} else {
if aux.Cmp(fq.Q) != -1 { // aux greater or equal nq
aux = new(big.Int).Mod(aux, fq.Q)
}
}
return aux
}
func (fq Fq) Equal(a, b *big.Int) bool {
aAff := fq.Affine(a)
bAff := fq.Affine(b)
return bytes.Equal(aAff.Bytes(), bAff.Bytes())
}
func BigIsOdd(n *big.Int) bool {
one := big.NewInt(int64(1))
and := new(big.Int).And(n, one)
return bytes.Equal(and.Bytes(), big.NewInt(int64(1)).Bytes())
}

View File

@@ -1,39 +0,0 @@
// code originally taken from https://github.com/arnaucube/go-snark (https://github.com/arnaucube/go-snark/blob/master/fields/fq.go), pasted here to ensure compatibility among future changes
package field
import (
"math/big"
"testing"
"github.com/stretchr/testify/assert"
)
func iToBig(a int) *big.Int {
return big.NewInt(int64(a))
}
func TestFq1(t *testing.T) {
fq1 := NewFq(iToBig(7))
res := fq1.Add(iToBig(4), iToBig(4))
assert.Equal(t, iToBig(1), fq1.Affine(res))
res = fq1.Double(iToBig(5))
assert.Equal(t, iToBig(3), fq1.Affine(res))
res = fq1.Sub(iToBig(5), iToBig(7))
assert.Equal(t, iToBig(5), fq1.Affine(res))
res = fq1.Neg(iToBig(5))
assert.Equal(t, iToBig(2), fq1.Affine(res))
res = fq1.Mul(iToBig(5), iToBig(11))
assert.Equal(t, iToBig(6), fq1.Affine(res))
res = fq1.Inverse(iToBig(4))
assert.Equal(t, iToBig(2), res)
res = fq1.Square(iToBig(5))
assert.Equal(t, iToBig(4), res)
}

1
go.mod
View File

@@ -7,4 +7,5 @@ require (
github.com/ethereum/go-ethereum v1.8.27
github.com/stretchr/testify v1.3.0
golang.org/x/crypto v0.0.0-20190621222207-cc06ce4a13d4
golang.org/x/sys v0.0.0-20190412213103-97732733099d
)

View File

@@ -6,7 +6,7 @@ import (
"github.com/ethereum/go-ethereum/crypto"
_constants "github.com/iden3/go-iden3-crypto/constants"
"github.com/iden3/go-iden3-crypto/field"
"github.com/iden3/go-iden3-crypto/ff"
"github.com/iden3/go-iden3-crypto/utils"
)
@@ -15,73 +15,72 @@ const SEED = "mimc"
var constants = generateConstantsData()
type constantsData struct {
maxFieldVal *big.Int
seedHash *big.Int
iv *big.Int
fqR field.Fq
nRounds int
cts []*big.Int
seedHash *big.Int
iv *big.Int
nRounds int
cts []*ff.Element
}
func generateConstantsData() constantsData {
var constants constantsData
fqR := field.NewFq(_constants.Q)
constants.fqR = fqR
// maxFieldVal is the R value of the Finite Field
constants.maxFieldVal = constants.fqR.Q
constants.seedHash = new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED)))
c := new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED + "_iv")))
constants.iv = new(big.Int).Mod(c, constants.maxFieldVal)
constants.iv = new(big.Int).Mod(c, _constants.Q)
constants.nRounds = 91
cts := getConstants(constants.fqR, SEED, constants.nRounds)
cts := getConstants(SEED, constants.nRounds)
constants.cts = cts
return constants
}
func getConstants(fqR field.Fq, seed string, nRounds int) []*big.Int {
cts := make([]*big.Int, nRounds)
cts[0] = big.NewInt(int64(0))
func getConstants(seed string, nRounds int) []*ff.Element {
cts := make([]*ff.Element, nRounds)
cts[0] = ff.NewElement()
c := new(big.Int).SetBytes(crypto.Keccak256([]byte(SEED)))
for i := 1; i < nRounds; i++ {
c = new(big.Int).SetBytes(crypto.Keccak256(c.Bytes()))
n := fqR.Affine(c)
cts[i] = n
n := new(big.Int).Mod(c, _constants.Q)
cts[i] = ff.NewElement().SetBigInt(n)
}
return cts
}
// MIMC7HashGeneric performs the MIMC7 hash over a *big.Int, in a generic way, where it can be specified the Finite Field over R, and the number of rounds
func MIMC7HashGeneric(fqR field.Fq, xIn, k *big.Int, nRounds int) *big.Int {
cts := getConstants(fqR, SEED, nRounds)
var r *big.Int
func MIMC7HashGeneric(xInBI, kBI *big.Int, nRounds int) *big.Int {
xIn := ff.NewElement().SetBigInt(xInBI)
k := ff.NewElement().SetBigInt(kBI)
cts := getConstants(SEED, nRounds)
var r *ff.Element
for i := 0; i < nRounds; i++ {
var t *big.Int
var t *ff.Element
if i == 0 {
t = fqR.Add(xIn, k)
t = ff.NewElement().Add(xIn, k)
} else {
t = fqR.Add(fqR.Add(r, k), cts[i])
t = ff.NewElement().Add(ff.NewElement().Add(r, k), cts[i])
}
t2 := fqR.Square(t)
t4 := fqR.Square(t2)
r = fqR.Mul(fqR.Mul(t4, t2), t)
t2 := ff.NewElement().Square(t)
t4 := ff.NewElement().Square(t2)
r = ff.NewElement().Mul(ff.NewElement().Mul(t4, t2), t)
}
return fqR.Affine(fqR.Add(r, k))
rE := ff.NewElement().Add(r, k)
res := big.NewInt(0)
rE.ToBigIntRegular(res)
return res
}
// HashGeneric performs the MIMC7 hash over a *big.Int array, in a generic way, where it can be specified the Finite Field over R, and the number of rounds
func HashGeneric(iv *big.Int, arr []*big.Int, fqR field.Fq, nRounds int) (*big.Int, error) {
if !utils.CheckBigIntArrayInField(arr, constants.fqR.Q) {
func HashGeneric(iv *big.Int, arr []*big.Int, nRounds int) (*big.Int, error) {
if !utils.CheckBigIntArrayInField(arr) {
return nil, errors.New("inputs values not inside Finite Field")
}
r := iv
var err error
for i := 0; i < len(arr); i++ {
r = MIMC7HashGeneric(fqR, r, arr[i], nRounds)
r = MIMC7HashGeneric(r, arr[i], nRounds)
if err != nil {
return r, err
}
@@ -90,40 +89,48 @@ func HashGeneric(iv *big.Int, arr []*big.Int, fqR field.Fq, nRounds int) (*big.I
}
// MIMC7Hash performs the MIMC7 hash over a *big.Int, using the Finite Field over R and the number of rounds setted in the `constants` variable
func MIMC7Hash(xIn, k *big.Int) *big.Int {
var r *big.Int
func MIMC7Hash(xInBI, kBI *big.Int) *big.Int {
xIn := ff.NewElement().SetBigInt(xInBI)
k := ff.NewElement().SetBigInt(kBI)
var r *ff.Element
for i := 0; i < constants.nRounds; i++ {
var t *big.Int
var t *ff.Element
if i == 0 {
t = constants.fqR.Add(xIn, k)
t = ff.NewElement().Add(xIn, k)
} else {
t = constants.fqR.Add(constants.fqR.Add(r, k), constants.cts[i])
t = ff.NewElement().Add(ff.NewElement().Add(r, k), constants.cts[i])
}
t2 := constants.fqR.Square(t)
t4 := constants.fqR.Square(t2)
r = constants.fqR.Mul(constants.fqR.Mul(t4, t2), t)
t2 := ff.NewElement().Square(t)
t4 := ff.NewElement().Square(t2)
r = ff.NewElement().Mul(ff.NewElement().Mul(t4, t2), t)
}
return constants.fqR.Affine(constants.fqR.Add(r, k))
rE := ff.NewElement().Add(r, k)
res := big.NewInt(0)
rE.ToBigIntRegular(res)
return res
}
// Hash performs the MIMC7 hash over a *big.Int array
func Hash(arr []*big.Int, key *big.Int) (*big.Int, error) {
if !utils.CheckBigIntArrayInField(arr, constants.fqR.Q) {
if !utils.CheckBigIntArrayInField(arr) {
return nil, errors.New("inputs values not inside Finite Field")
}
var r *big.Int
if key == nil {
r = constants.fqR.Zero()
r = big.NewInt(0)
} else {
r = key
}
for i := 0; i < len(arr); i++ {
r = constants.fqR.Add(
constants.fqR.Add(
r = new(big.Int).Add(
new(big.Int).Add(
r,
arr[i],
),
MIMC7Hash(arr[i], r))
r = new(big.Int).Mod(r, _constants.Q)
}
return r, nil
}

View File

@@ -6,7 +6,6 @@ import (
"testing"
"github.com/ethereum/go-ethereum/crypto"
"github.com/iden3/go-iden3-crypto/field"
"github.com/stretchr/testify/assert"
)
@@ -22,16 +21,12 @@ func TestMIMC7Generic(t *testing.T) {
b2 := big.NewInt(int64(2))
b3 := big.NewInt(int64(3))
r, ok := new(big.Int).SetString("21888242871839275222246405745257275088548364400416034343698204186575808495617", 10)
assert.True(t, ok)
fqR := field.NewFq(r)
bigArray := []*big.Int{b1, b2, b3}
// Generic Hash
mhg := MIMC7HashGeneric(fqR, b1, b2, 91)
mhg := MIMC7HashGeneric(b1, b2, 91)
assert.Equal(t, "10594780656576967754230020536574539122676596303354946869887184401991294982664", mhg.String())
hg, err := HashGeneric(fqR.Zero(), bigArray, fqR, 91)
hg, err := HashGeneric(big.NewInt(0), bigArray, 91)
assert.Nil(t, err)
assert.Equal(t, "6464402164086696096195815557694604139393321133243036833927490113253119343397", (*big.Int)(hg).String())
}

View File

@@ -1,13 +1,12 @@
package poseidon
import (
"bytes"
"errors"
"math/big"
"strconv"
_constants "github.com/iden3/go-iden3-crypto/constants"
"github.com/iden3/go-iden3-crypto/field"
"github.com/iden3/go-iden3-crypto/constants"
"github.com/iden3/go-iden3-crypto/ff"
"github.com/iden3/go-iden3-crypto/utils"
"golang.org/x/crypto/blake2b"
)
@@ -17,42 +16,28 @@ const NROUNDSF = 8
const NROUNDSP = 57
const T = 6
var constants = generateConstantsData()
var constC []*ff.Element
var constM [T][T]*ff.Element
type constantsData struct {
fqR field.Fq
c []*big.Int
m [][]*big.Int
func Zero() *ff.Element {
return ff.NewElement()
}
func generateConstantsData() constantsData {
var constants constantsData
fqR := field.NewFq(_constants.Q)
constants.fqR = fqR
constants.c = getPseudoRandom(fqR, SEED+"_constants", NROUNDSF+NROUNDSP)
constants.m = getMDS(fqR)
return constants
func modQ(v *big.Int) {
v.Mod(v, constants.Q)
}
func leByteArrayToBigInt(b []byte) *big.Int {
res := big.NewInt(0)
for i := 0; i < len(b); i++ {
n := big.NewInt(int64(b[i]))
res = new(big.Int).Add(res, new(big.Int).Lsh(n, uint(i*8)))
}
return res
func init() {
constC = getPseudoRandom(SEED+"_constants", NROUNDSF+NROUNDSP)
constM = getMDS()
}
func getPseudoRandom(fqR field.Fq, seed string, n int) []*big.Int {
var res []*big.Int
func getPseudoRandom(seed string, n int) []*ff.Element {
res := make([]*ff.Element, n)
hash := blake2b.Sum256([]byte(seed))
for len(res) < n {
hashBigInt := new(big.Int)
newN := fqR.Affine(utils.SetBigIntFromLEBytes(hashBigInt, hash[:]))
// newN := fqR.Affine(leByteArrayToBigInt(hash[:]))
res = append(res, newN)
for i := 0; i < n; i++ {
hashBigInt := big.NewInt(int64(0))
res[i] = ff.NewElement().SetBigInt(utils.SetBigIntFromLEBytes(hashBigInt, hash[:]))
hash = blake2b.Sum256(hash[:])
}
return res
@@ -67,31 +52,30 @@ func nonceToString(n int) string {
}
// https://eprint.iacr.org/2019/458.pdf pag.8
func getMDS(fqR field.Fq) [][]*big.Int {
func getMDS() [T][T]*ff.Element {
nonce := 0
cauchyMatrix := getPseudoRandom(fqR, SEED+"_matrix_"+nonceToString(nonce), T*2)
cauchyMatrix := getPseudoRandom(SEED+"_matrix_"+nonceToString(nonce), T*2)
for !checkAllDifferent(cauchyMatrix) {
nonce += 1
cauchyMatrix = getPseudoRandom(fqR, SEED+"_matrix_"+nonceToString(nonce), T*2)
cauchyMatrix = getPseudoRandom(SEED+"_matrix_"+nonceToString(nonce), T*2)
}
var m [][]*big.Int
var m [T][T]*ff.Element
for i := 0; i < T; i++ {
var mi []*big.Int
for j := 0; j < T; j++ {
mi = append(mi, fqR.Inverse(fqR.Sub(cauchyMatrix[i], cauchyMatrix[T+j])))
m[i][j] = ff.NewElement().Sub(cauchyMatrix[i], cauchyMatrix[T+j])
m[i][j].Inverse(m[i][j])
}
m = append(m, mi)
}
return m
}
func checkAllDifferent(v []*big.Int) bool {
func checkAllDifferent(v []*ff.Element) bool {
for i := 0; i < len(v); i++ {
if bytes.Equal(v[i].Bytes(), big.NewInt(int64(0)).Bytes()) {
if v[i].Equal(ff.NewElement()) {
return false
}
for j := i + 1; j < len(v); j++ {
if bytes.Equal(v[i].Bytes(), v[j].Bytes()) {
if v[i].Equal(v[j]) {
return false
}
}
@@ -100,90 +84,94 @@ func checkAllDifferent(v []*big.Int) bool {
}
// ark computes Add-Round Key, from the paper https://eprint.iacr.org/2019/458.pdf
func ark(state []*big.Int, c *big.Int) []*big.Int {
func ark(state [T]*ff.Element, c *ff.Element) {
for i := 0; i < T; i++ {
state[i] = constants.fqR.Add(state[i], c)
state[i].Add(state[i], c)
}
return state
}
// cubic performs x^5 mod p
// https://eprint.iacr.org/2019/458.pdf page 8
func cubic(a *big.Int) *big.Int {
return constants.fqR.Mul(a, constants.fqR.Square(constants.fqR.Square(a)))
func cubic(a *ff.Element) {
a.Exp(*a, 5)
}
// sbox https://eprint.iacr.org/2019/458.pdf page 6
func sbox(state []*big.Int, i int) []*big.Int {
func sbox(state [T]*ff.Element, i int) {
if (i < NROUNDSF/2) || (i >= NROUNDSF/2+NROUNDSP) {
for j := 0; j < T; j++ {
state[j] = cubic(state[j])
cubic(state[j])
}
} else {
state[0] = cubic(state[0])
cubic(state[0])
}
return state
}
// mix returns [[matrix]] * [vector]
func mix(state []*big.Int, m [][]*big.Int) []*big.Int {
var newState []*big.Int
for i := 0; i < len(state); i++ {
newState = append(newState, constants.fqR.Zero())
for j := 0; j < len(state); j++ {
newState[i] = constants.fqR.Add(newState[i], constants.fqR.Mul(m[i][j], state[j]))
func mix(state [T]*ff.Element, newState [T]*ff.Element, m [T][T]*ff.Element) {
mul := Zero()
for i := 0; i < T; i++ {
newState[i].SetUint64(0)
for j := 0; j < T; j++ {
mul.Mul(m[i][j], state[j])
newState[i].Add(newState[i], mul)
}
}
return newState
}
// PoseidonHash computes the Poseidon hash for the given inputs
func PoseidonHash(inp []*big.Int) (*big.Int, error) {
if len(inp) == 0 || len(inp) > T {
return nil, errors.New("wrong inputs length")
}
if !utils.CheckBigIntArrayInField(inp, constants.fqR.Q) {
func PoseidonHash(inpBI [T]*big.Int) (*big.Int, error) {
if !utils.CheckBigIntArrayInField(inpBI[:]) {
return nil, errors.New("inputs values not inside Finite Field")
}
state := inp
for i := len(inp); i < T; i++ {
state = append(state, constants.fqR.Zero())
inp := utils.BigIntArrayToElementArray(inpBI[:])
state := [T]*ff.Element{}
for i := 0; i < T; i++ {
state[i] = ff.NewElement().Set(inp[i])
}
// ARK --> SBox --> M, https://eprint.iacr.org/2019/458.pdf pag.5
for i := 0; i < NROUNDSF+NROUNDSP; i++ {
state = ark(state, constants.c[i])
state = sbox(state, i)
state = mix(state, constants.m)
var newState [T]*ff.Element
for i := 0; i < T; i++ {
newState[i] = Zero()
}
return state[0], nil
for i := 0; i < NROUNDSF+NROUNDSP; i++ {
ark(state, constC[i])
sbox(state, i)
mix(state, newState, constM)
state, newState = newState, state
}
rE := state[0]
r := big.NewInt(0)
rE.ToBigIntRegular(r)
return r, nil
}
// Hash performs the Poseidon hash over a *big.Int array
// Hash performs the Poseidon hash over a ff.Element array
// in chunks of 5 elements
func Hash(arr []*big.Int) (*big.Int, error) {
if !utils.CheckBigIntArrayInField(arr, constants.fqR.Q) {
return nil, errors.New("inputs values not inside Finite Field")
}
r := constants.fqR.Zero()
r := big.NewInt(int64(1))
for i := 0; i < len(arr); i = i + T - 1 {
var toHash [T]*big.Int
for j := 0; j < T-1; j++ {
if i+j < len(arr) {
toHash[j] = arr[i+j]
} else {
toHash[j] = _constants.Zero
j := 0
for ; j < T-1; j++ {
if i+j >= len(arr) {
break
}
toHash[j] = arr[i+j]
}
toHash[T-1] = r
ph, err := PoseidonHash(toHash[:])
toHash[j] = r
j++
for ; j < T; j++ {
toHash[j] = big.NewInt(0)
}
ph, err := PoseidonHash(toHash)
if err != nil {
return nil, err
}
r = constants.fqR.Add(
r,
ph)
modQ(r.Add(r, ph))
}
return r, nil
@@ -195,12 +183,13 @@ func HashBytes(b []byte) (*big.Int, error) {
n := 31
bElems := make([]*big.Int, 0, len(b)/n+1)
for i := 0; i < len(b)/n; i++ {
v := new(big.Int)
v := big.NewInt(int64(0))
utils.SetBigIntFromLEBytes(v, b[n*i:n*(i+1)])
bElems = append(bElems, v)
}
if len(b)%n != 0 {
v := new(big.Int)
v := big.NewInt(int64(0))
utils.SetBigIntFromLEBytes(v, b[(len(b)/n)*n:])
bElems = append(bElems, v)
}

View File

@@ -16,17 +16,29 @@ func TestBlake2bVersion(t *testing.T) {
}
func TestPoseidon(t *testing.T) {
b1 := big.NewInt(int64(1))
b2 := big.NewInt(int64(2))
b1 := big.NewInt(1)
b2 := big.NewInt(2)
h, err := Hash([]*big.Int{b1, b2})
assert.Nil(t, err)
assert.Equal(t, "12242166908188651009877250812424843524687801523336557272219921456462821518061", h.String())
assert.Equal(t, "4932297968297298434239270129193057052722409868268166443802652458940273154855", h.String())
b3 := big.NewInt(int64(3))
b4 := big.NewInt(int64(4))
b3 := big.NewInt(3)
b4 := big.NewInt(4)
h, err = Hash([]*big.Int{b3, b4})
assert.Nil(t, err)
assert.Equal(t, "17185195740979599334254027721507328033796809509313949281114643312710535000993", h.String())
assert.Equal(t, "4635491972858758537477743930622086396911540895966845494943021655521913507504", h.String())
b5 := big.NewInt(5)
b6 := big.NewInt(6)
b7 := big.NewInt(7)
b8 := big.NewInt(8)
b9 := big.NewInt(9)
b10 := big.NewInt(10)
b11 := big.NewInt(11)
b12 := big.NewInt(12)
h, err = Hash([]*big.Int{b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12})
assert.Nil(t, err)
assert.Equal(t, "15278801138972282646981503374384603641625274360649669926363020545395022098027", h.String())
msg := []byte("Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.")
n := 31
@@ -43,7 +55,7 @@ func TestPoseidon(t *testing.T) {
}
hmsg, err := Hash(msgElems)
assert.Nil(t, err)
assert.Equal(t, "19204466598658860237115179437116112945222240370078952939676636700594938553268", hmsg.String())
assert.Equal(t, "16019700159595764790637132363672701294192939959594423814006267756172551741065", hmsg.String())
msg2 := []byte("Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet.")
msg2Elems := make([]*big.Int, 0, len(msg2)/n+1)
@@ -59,11 +71,11 @@ func TestPoseidon(t *testing.T) {
}
hmsg2, err := Hash(msg2Elems)
assert.Nil(t, err)
assert.Equal(t, "11846976426841208067103690249139614816718727366915557488657094868020932500524", hmsg2.String())
assert.Equal(t, "2978613163687734485261639854325792381691890647104372645321246092227111432722", hmsg2.String())
hmsg2, err = HashBytes(msg2)
assert.Nil(t, err)
assert.Equal(t, "11846976426841208067103690249139614816718727366915557488657094868020932500524", hmsg2.String())
assert.Equal(t, "2978613163687734485261639854325792381691890647104372645321246092227111432722", hmsg2.String())
}
func TestPoseidonBrokenChunks(t *testing.T) {
@@ -77,9 +89,9 @@ func TestPoseidonBrokenChunks(t *testing.T) {
}
func TestPoseidonBrokenPadding(t *testing.T) {
h1, err := Hash([]*big.Int{big.NewInt(1)})
h1, err := Hash([]*big.Int{big.NewInt(int64(1))})
assert.Nil(t, err)
h2, err := Hash([]*big.Int{big.NewInt(1), big.NewInt(0)})
h2, err := Hash([]*big.Int{big.NewInt(int64(1)), big.NewInt(int64(0))})
assert.Nil(t, err)
assert.NotEqual(t, h1, h2)
}
@@ -95,3 +107,16 @@ func BenchmarkPoseidon(b *testing.B) {
Hash(bigArray4)
}
}
func BenchmarkPoseidonLarge(b *testing.B) {
b12 := utils.NewIntFromString("11384336176656855268977457483345535180380036354188103142384839473266348197733")
b45 := utils.NewIntFromString("11384336176656855268977457483345535180380036354188103142384839473266348197733")
b78 := utils.NewIntFromString("11384336176656855268977457483345535180380036354188103142384839473266348197733")
b41 := utils.NewIntFromString("11384336176656855268977457483345535180380036354188103142384839473266348197733")
bigArray4 := []*big.Int{b12, b45, b78, b41}
for i := 0; i < b.N; i++ {
Hash(bigArray4)
}
}

View File

@@ -6,6 +6,9 @@ import (
"fmt"
"math/big"
"strings"
"github.com/iden3/go-iden3-crypto/constants"
"github.com/iden3/go-iden3-crypto/ff"
)
// NewIntFromString creates a new big.Int from a decimal integer encoded as a
@@ -87,20 +90,28 @@ func HexDecodeInto(dst []byte, h []byte) error {
return nil
}
// CheckBigIntInField checks if given big.Int fits in a Field Q element
func CheckBigIntInField(a *big.Int, q *big.Int) bool {
if a.Cmp(q) != -1 {
// CheckBigIntInField checks if given *big.Int fits in a Field Q element
func CheckBigIntInField(a *big.Int) bool {
if a.Cmp(constants.Q) != -1 {
return false
}
return true
}
// CheckBigIntArrayInField checks if given big.Int fits in a Field Q element
func CheckBigIntArrayInField(arr []*big.Int, q *big.Int) bool {
// CheckBigIntArrayInField checks if given *big.Int fits in a Field Q element
func CheckBigIntArrayInField(arr []*big.Int) bool {
for _, a := range arr {
if !CheckBigIntInField(a, q) {
if !CheckBigIntInField(a) {
return false
}
}
return true
}
func BigIntArrayToElementArray(bi []*big.Int) []*ff.Element {
var o []*ff.Element
for i := range bi {
o = append(o, ff.NewElement().SetBigInt(bi[i]))
}
return o
}