Browse Source

enabling batch opening and mock tests (#80)

- add mock circuits
- add vanilla and jellyfish plonk gates
- performance tuning
main
zhenfei 2 years ago
committed by GitHub
parent
commit
baaa06b07b
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
51 changed files with 5636 additions and 1387 deletions
  1. +4
    -1
      .gitignore
  2. +1
    -0
      Cargo.toml
  3. +8
    -1
      arithmetic/Cargo.toml
  4. +37
    -0
      arithmetic/benches/bench.rs
  5. +9
    -1
      arithmetic/src/lib.rs
  6. +180
    -1
      arithmetic/src/multilinear_polynomial.rs
  7. +340
    -0
      arithmetic/src/univariate_polynomial.rs
  8. +96
    -0
      arithmetic/src/util.rs
  9. +1
    -37
      arithmetic/src/virtual_polynomial.rs
  10. +23
    -8
      hyperplonk/Cargo.toml
  11. +149
    -0
      hyperplonk/benches/bench.rs
  12. +158
    -0
      hyperplonk/src/custom_gate.rs
  13. +7
    -7
      hyperplonk/src/errors.rs
  14. +9
    -985
      hyperplonk/src/lib.rs
  15. +235
    -0
      hyperplonk/src/mock.rs
  16. +4
    -0
      hyperplonk/src/prelude.rs
  17. +6
    -1
      hyperplonk/src/selectors.rs
  18. +829
    -0
      hyperplonk/src/snark.rs
  19. +96
    -106
      hyperplonk/src/structs.rs
  20. +94
    -27
      hyperplonk/src/utils.rs
  21. +10
    -1
      hyperplonk/src/witness.rs
  22. +51
    -0
      pcs/Cargo.toml
  23. +88
    -0
      pcs/benches/bench.rs
  24. +7
    -0
      pcs/readme.md
  25. +50
    -0
      pcs/src/errors.rs
  26. +190
    -0
      pcs/src/lib.rs
  27. +11
    -0
      pcs/src/multilinear_kzg/batching/mod.rs
  28. +426
    -0
      pcs/src/multilinear_kzg/batching/multi_poly.rs
  29. +368
    -0
      pcs/src/multilinear_kzg/batching/single_poly.rs
  30. +644
    -0
      pcs/src/multilinear_kzg/mod.rs
  31. +273
    -0
      pcs/src/multilinear_kzg/srs.rs
  32. +432
    -0
      pcs/src/multilinear_kzg/util.rs
  33. +21
    -0
      pcs/src/prelude.rs
  34. +25
    -0
      pcs/src/structs.rs
  35. +438
    -0
      pcs/src/univariate_kzg/mod.rs
  36. +156
    -0
      pcs/src/univariate_kzg/srs.rs
  37. +8
    -4
      poly-iop/Cargo.toml
  38. +16
    -17
      poly-iop/benches/bench.rs
  39. +4
    -3
      poly-iop/readme.md
  40. +7
    -7
      poly-iop/src/errors.rs
  41. +13
    -17
      poly-iop/src/perm_check/mod.rs
  42. +2
    -28
      poly-iop/src/perm_check/util.rs
  43. +2
    -10
      poly-iop/src/prelude.rs
  44. +2
    -2
      poly-iop/src/prod_check/mod.rs
  45. +9
    -8
      poly-iop/src/prod_check/util.rs
  46. +44
    -28
      poly-iop/src/sum_check/prover.rs
  47. +1
    -74
      poly-iop/src/utils.rs
  48. +2
    -2
      transcript/src/errors.rs
  49. +8
    -11
      transcript/src/lib.rs
  50. +13
    -0
      util/Cargo.toml
  51. +29
    -0
      util/src/lib.rs

+ 4
- 1
.gitignore

@ -296,4 +296,7 @@ TSWLatexianTemp*
# REVTeX puts footnotes in the bibliography by default, unless the nofootinbib
# option is specified. Footnotes are the stored in a file with suffix Notes.bib.
# Uncomment the next line to have this generated file ignored.
#*Notes.bib
#*Notes.bib
*.txt

+ 1
- 0
Cargo.toml

@ -4,4 +4,5 @@ members = [
"hyperplonk",
"poly-iop",
"transcript",
"util"
]

+ 8
- 1
arithmetic/Cargo.toml

@ -19,6 +19,7 @@ rayon = { version = "1.5.2", default-features = false, optional = true }
[dev-dependencies]
ark-ec = { version = "^0.3.0", default-features = false }
criterion = "0.3.0"
[features]
# default = [ "parallel", "print-trace" ]
@ -31,4 +32,10 @@ parallel = [
]
print-trace = [
"ark-std/print-trace"
]
]
[[bench]]
name = "mle_eval"
path = "benches/bench.rs"
harness = false

+ 37
- 0
arithmetic/benches/bench.rs

@ -0,0 +1,37 @@
#[macro_use]
extern crate criterion;
use arithmetic::fix_variables;
use ark_bls12_381::Fr;
use ark_ff::Field;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{ops::Range, test_rng};
use criterion::{black_box, BenchmarkId, Criterion};
const NUM_VARIABLES_RANGE: Range<usize> = 10..21;
fn evaluation_op_bench<F: Field>(c: &mut Criterion) {
let mut rng = test_rng();
let mut group = c.benchmark_group("Evaluate");
for nv in NUM_VARIABLES_RANGE {
group.bench_with_input(BenchmarkId::new("evaluate native", nv), &nv, |b, &nv| {
let poly = DenseMultilinearExtension::<F>::rand(nv, &mut rng);
let point: Vec<_> = (0..nv).map(|_| F::rand(&mut rng)).collect();
b.iter(|| black_box(poly.evaluate(&point).unwrap()))
});
group.bench_with_input(BenchmarkId::new("evaluate optimized", nv), &nv, |b, &nv| {
let poly = DenseMultilinearExtension::<F>::rand(nv, &mut rng);
let point: Vec<_> = (0..nv).map(|_| F::rand(&mut rng)).collect();
b.iter(|| black_box(fix_variables(&poly, &point)))
});
}
group.finish();
}
fn bench_bls_381(c: &mut Criterion) {
evaluation_op_bench::<Fr>(c);
}
criterion_group!(benches, bench_bls_381);
criterion_main!(benches);

+ 9
- 1
arithmetic/src/lib.rs

@ -1,7 +1,15 @@
mod errors;
mod multilinear_polynomial;
mod univariate_polynomial;
mod util;
mod virtual_polynomial;
pub use errors::ArithErrors;
pub use multilinear_polynomial::{random_zero_mle_list, DenseMultilinearExtension};
pub use multilinear_polynomial::{
evaluate_no_par, evaluate_opt, fix_first_variable, fix_variables, identity_permutation_mle,
merge_polynomials, random_mle_list, random_permutation_mle, random_zero_mle_list,
DenseMultilinearExtension,
};
pub use univariate_polynomial::{build_l, get_uni_domain};
pub use util::{bit_decompose, gen_eval_point, get_batched_nv, get_index};
pub use virtual_polynomial::{build_eq_x_r, VPAuxInfo, VirtualPolynomial};

+ 180
- 1
arithmetic/src/multilinear_polynomial.rs

@ -1,9 +1,49 @@
use ark_ff::PrimeField;
use crate::{util::get_batched_nv, ArithErrors};
use ark_ff::{Field, PrimeField};
use ark_poly::MultilinearExtension;
use ark_std::{end_timer, rand::RngCore, start_timer};
#[cfg(feature = "parallel")]
use rayon::prelude::{IndexedParallelIterator, IntoParallelRefMutIterator, ParallelIterator};
use std::rc::Rc;
pub use ark_poly::DenseMultilinearExtension;
/// Sample a random list of multilinear polynomials.
/// Returns
/// - the list of polynomials,
/// - its sum of polynomial evaluations over the boolean hypercube.
pub fn random_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> (Vec<Rc<DenseMultilinearExtension<F>>>, F) {
let start = start_timer!(|| "sample random mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
let mut sum = F::zero();
for _ in 0..(1 << nv) {
let mut product = F::one();
for e in multiplicands.iter_mut() {
let val = F::rand(rng);
e.push(val);
product *= val;
}
sum += product;
}
let list = multiplicands
.into_iter()
.map(|x| Rc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
(list, sum)
}
// Build a randomize list of mle-s whose sum is zero.
pub fn random_zero_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
@ -31,3 +71,142 @@ pub fn random_zero_mle_list(
end_timer!(start);
list
}
/// An MLE that represent an identity permutation: `f(index) \mapto index`
pub fn identity_permutation_mle<F: PrimeField>(
num_vars: usize,
) -> Rc<DenseMultilinearExtension<F>> {
let s_id_vec = (0..1u64 << num_vars).map(F::from).collect();
Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, s_id_vec,
))
}
/// An MLE that represent a random permutation
pub fn random_permutation_mle<F: PrimeField, R: RngCore>(
num_vars: usize,
rng: &mut R,
) -> Rc<DenseMultilinearExtension<F>> {
let len = 1u64 << num_vars;
let mut s_id_vec: Vec<F> = (0..len).map(F::from).collect();
let mut s_perm_vec = vec![];
for _ in 0..len {
let index = rng.next_u64() as usize % s_id_vec.len();
s_perm_vec.push(s_id_vec.remove(index));
}
Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, s_perm_vec,
))
}
pub fn evaluate_opt<F: Field>(poly: &DenseMultilinearExtension<F>, point: &[F]) -> F {
assert_eq!(poly.num_vars, point.len());
fix_variables(poly, point).evaluations[0]
}
pub fn fix_variables<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &[F],
) -> DenseMultilinearExtension<F> {
assert!(
partial_point.len() <= poly.num_vars,
"invalid size of partial point"
);
let nv = poly.num_vars;
let mut poly = poly.evaluations.to_vec();
let dim = partial_point.len();
// evaluate single variable of partial point from left to right
for (i, point) in partial_point.iter().enumerate().take(dim) {
poly = fix_one_variable_helper(&poly, nv - i, point);
}
DenseMultilinearExtension::<F>::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
}
pub fn fix_first_variable<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &F,
) -> DenseMultilinearExtension<F> {
assert!(poly.num_vars != 0, "invalid size of partial point");
let nv = poly.num_vars;
let res = fix_one_variable_helper(&poly.evaluations, nv, partial_point);
DenseMultilinearExtension::<F>::from_evaluations_slice(nv - 1, &res)
}
fn fix_one_variable_helper<F: Field>(data: &[F], nv: usize, point: &F) -> Vec<F> {
let mut res = vec![F::zero(); 1 << (nv - 1)];
let one_minus_p = F::one() - point;
// evaluate single variable of partial point from left to right
#[cfg(not(feature = "parallel"))]
for b in 0..(1 << (nv - 1)) {
res[b] = data[b << 1] * one_minus_p + data[(b << 1) + 1] * point;
}
#[cfg(feature = "parallel")]
if nv >= 13 {
// on my computer we parallelization doesn't help till nv >= 13
res.par_iter_mut().enumerate().for_each(|(i, x)| {
*x = data[i << 1] * one_minus_p + data[(i << 1) + 1] * point;
});
} else {
for b in 0..(1 << (nv - 1)) {
res[b] = data[b << 1] * one_minus_p + data[(b << 1) + 1] * point;
}
}
res
}
pub fn evaluate_no_par<F: Field>(poly: &DenseMultilinearExtension<F>, point: &[F]) -> F {
assert_eq!(poly.num_vars, point.len());
fix_variables_no_par(poly, point).evaluations[0]
}
fn fix_variables_no_par<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &[F],
) -> DenseMultilinearExtension<F> {
assert!(
partial_point.len() <= poly.num_vars,
"invalid size of partial point"
);
let nv = poly.num_vars;
let mut poly = poly.evaluations.to_vec();
let dim = partial_point.len();
// evaluate single variable of partial point from left to right
for i in 1..dim + 1 {
let r = partial_point[i - 1];
let one_minus_r = F::one() - r;
for b in 0..(1 << (nv - i)) {
poly[b] = poly[b << 1] * one_minus_r + poly[(b << 1) + 1] * r;
}
}
DenseMultilinearExtension::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
}
/// merge a set of polynomials. Returns an error if the
/// polynomials do not share a same number of nvs.
pub fn merge_polynomials<F: PrimeField>(
polynomials: &[Rc<DenseMultilinearExtension<F>>],
) -> Result<Rc<DenseMultilinearExtension<F>>, ArithErrors> {
let nv = polynomials[0].num_vars();
for poly in polynomials.iter() {
if nv != poly.num_vars() {
return Err(ArithErrors::InvalidParameters(
"num_vars do not match for polynomials".to_string(),
));
}
}
let merged_nv = get_batched_nv(nv, polynomials.len());
let mut scalars = vec![];
for poly in polynomials.iter() {
scalars.extend_from_slice(poly.to_evaluations().as_slice());
}
scalars.extend_from_slice(vec![F::zero(); (1 << merged_nv) - scalars.len()].as_ref());
Ok(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
merged_nv, scalars,
)))
}

+ 340
- 0
arithmetic/src/univariate_polynomial.rs

@ -0,0 +1,340 @@
// TODO: remove
#![allow(dead_code)]
use crate::{bit_decompose, ArithErrors};
use ark_ff::PrimeField;
use ark_poly::{
univariate::DensePolynomial, EvaluationDomain, Evaluations, Radix2EvaluationDomain,
};
use ark_std::log2;
/// Given a list of points, build `l(points)` which is a list of univariate
/// polynomials that goes through the points; extend the dimension of the points
/// by `log(points.len())` if `with_suffix` is set.
pub fn build_l<F: PrimeField>(
points: &[Vec<F>],
domain: &Radix2EvaluationDomain<F>,
with_suffix: bool,
) -> Result<Vec<DensePolynomial<F>>, ArithErrors> {
let mut uni_polys = Vec::new();
if with_suffix {
// 1.1 build the indexes and the univariate polys that go through the indexes
let prefix_len = log2(points.len()) as usize;
let indexes: Vec<Vec<bool>> = (0..points.len())
.map(|x| bit_decompose(x as u64, prefix_len))
.collect();
for i in 0..prefix_len {
let eval: Vec<F> = indexes
.iter()
.map(|x| F::from(x[prefix_len - i - 1]))
.collect();
uni_polys.push(Evaluations::from_vec_and_domain(eval, *domain).interpolate());
}
}
// 1.2 build the actual univariate polys that go through the points
uni_polys.extend_from_slice(build_l_internal(points, domain)?.as_slice());
Ok(uni_polys)
}
/// Given a list of points, build `l(points)` which is a list of univariate
/// polynomials that goes through the points.
pub(crate) fn build_l_internal<F: PrimeField>(
points: &[Vec<F>],
domain: &Radix2EvaluationDomain<F>,
) -> Result<Vec<DensePolynomial<F>>, ArithErrors> {
let mut uni_polys = Vec::new();
let num_var = points[0].len();
// build the actual univariate polys that go through the points
for i in 0..num_var {
let mut eval: Vec<F> = points.iter().map(|x| x[i]).collect();
eval.extend_from_slice(vec![F::zero(); domain.size as usize - eval.len()].as_slice());
uni_polys.push(Evaluations::from_vec_and_domain(eval, *domain).interpolate())
}
Ok(uni_polys)
}
/// get the domain for the univariate polynomial
#[inline]
pub fn get_uni_domain<F: PrimeField>(
uni_poly_degree: usize,
) -> Result<Radix2EvaluationDomain<F>, ArithErrors> {
let domain = match Radix2EvaluationDomain::<F>::new(uni_poly_degree) {
Some(p) => p,
None => {
return Err(ArithErrors::InvalidParameters(
"failed to build radix 2 domain".to_string(),
))
},
};
Ok(domain)
}
#[cfg(test)]
mod test {
use super::*;
use ark_bls12_381::Fr;
use ark_ff::{field_new, One};
use ark_poly::UVPolynomial;
#[test]
fn test_build_l_with_suffix() -> Result<(), ArithErrors> {
test_build_l_with_suffix_helper::<Fr>()
}
fn test_build_l_with_suffix_helper<F: PrimeField>() -> Result<(), ArithErrors> {
// point 1 is [1, 2]
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let domain = get_uni_domain::<Fr>(2)?;
let l = build_l(&[point1.clone(), point2.clone()], &domain, true)?;
// roots: [1, -1]
// l0 = -1/2 * x + 1/2
// l1 = -x + 2
// l2 = -x + 3
let l0 = DensePolynomial::from_coefficients_vec(vec![
Fr::one() / Fr::from(2u64),
-Fr::one() / Fr::from(2u64),
]);
let l1 = DensePolynomial::from_coefficients_vec(vec![Fr::from(2u64), -Fr::one()]);
let l2 = DensePolynomial::from_coefficients_vec(vec![Fr::from(3u64), -Fr::one()]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
assert_eq!(l2, l[2], "l2 not equal");
}
{
let domain = get_uni_domain::<Fr>(3)?;
let l = build_l(&[point1, point2, point3], &domain, true)?;
// sage: q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
// sage: P.<x> = PolynomialRing(Zmod(q))
// sage: root1 = 1
// sage: root2 = 0x8D51CCCE760304D0EC030002760300000001000000000000
// sage: root3 = -1
// sage: root4 = -root2
// Arkwork's code is a bit wired: it also interpolate (root4, 0)
// which returns a degree 3 polynomial, instead of degree 2
// ========================
// l0: [0, 0, 1]
// ========================
// sage: points = [(root1, 0), (root2, 0), (root3, 1), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^3 +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385*x^2 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
let l0 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
]);
// ========================
// l1: [0, 1, 0]
// ========================
// sage: points = [(root1, 0), (root2, 1), (root3, 0), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 866286206518413079694067382671935694567563117191340490752*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^2 +
// 52435875175126190478581454301667552757996485117855702128036095582747240693761*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
let l1 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"52435875175126190478581454301667552757996485117855702128036095582747240693761"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
field_new!(
Fr,
"866286206518413079694067382671935694567563117191340490752"
),
]);
// ========================
// l2: [1, 3, 5]
// ========================
// sage: points = [(root1, 1), (root2, 3), (root3, 5), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 2598858619555239239082202148015807083702689351574021472255*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296129*x^2 +
// 52435875175126190476848881888630726598608350352511830738900969348364559712256*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888387
let l2 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888387"
),
field_new!(
Fr,
"52435875175126190476848881888630726598608350352511830738900969348364559712256"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296129"
),
field_new!(
Fr,
"2598858619555239239082202148015807083702689351574021472255"
),
]);
// ========================
// l3: [2, 4, 6]
// ========================
// sage: points = [(root1, 2), (root2, 4), (root3, 6), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 3465144826073652318776269530687742778270252468765361963007*x^3 +
// x^2 +
// 52435875175126190475982595682112313518914282969839895044333406231173219221504*x +
// 3
let l3 = DensePolynomial::from_coefficients_vec(vec![
Fr::from(3u64),
field_new!(
Fr,
"52435875175126190475982595682112313518914282969839895044333406231173219221504"
),
Fr::one(),
field_new!(
Fr,
"3465144826073652318776269530687742778270252468765361963007"
),
]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
assert_eq!(l2, l[2], "l2 not equal");
assert_eq!(l3, l[3], "l3 not equal");
}
Ok(())
}
#[test]
fn test_build_l() -> Result<(), ArithErrors> {
test_build_l_helper::<Fr>()
}
fn test_build_l_helper<F: PrimeField>() -> Result<(), ArithErrors> {
// point 1 is [1, 2]
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let domain = get_uni_domain::<Fr>(2)?;
let l = build_l(&[point1.clone(), point2.clone()], &domain, false)?;
// roots: [1, -1]
// l0 = -x + 2
// l1 = -x + 3
let l0 = DensePolynomial::from_coefficients_vec(vec![Fr::from(2u64), -Fr::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![Fr::from(3u64), -Fr::one()]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
}
{
let domain = get_uni_domain::<Fr>(3)?;
let l = build_l(&[point1, point2, point3], &domain, false)?;
// sage: q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
// sage: P.<x> = PolynomialRing(Zmod(q))
// sage: root1 = 1
// sage: root2 = 0x8D51CCCE760304D0EC030002760300000001000000000000
// sage: root3 = -1
// sage: root4 = -root2
// Arkwork's code is a bit wired: it also interpolate (root4, 0)
// which returns a degree 3 polynomial, instead of degree 2
// ========================
// l0: [1, 3, 5]
// ========================
// sage: points = [(root1, 1), (root2, 3), (root3, 5), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 2598858619555239239082202148015807083702689351574021472255*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296129*x^2 +
// 52435875175126190476848881888630726598608350352511830738900969348364559712256*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888387
let l0 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888387"
),
field_new!(
Fr,
"52435875175126190476848881888630726598608350352511830738900969348364559712256"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296129"
),
field_new!(
Fr,
"2598858619555239239082202148015807083702689351574021472255"
),
]);
// ========================
// l1: [2, 4, 6]
// ========================
// sage: points = [(root1, 2), (root2, 4), (root3, 6), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 3465144826073652318776269530687742778270252468765361963007*x^3 +
// x^2 +
// 52435875175126190475982595682112313518914282969839895044333406231173219221504*x +
// 3
let l1 = DensePolynomial::from_coefficients_vec(vec![
Fr::from(3u64),
field_new!(
Fr,
"52435875175126190475982595682112313518914282969839895044333406231173219221504"
),
Fr::one(),
field_new!(
Fr,
"3465144826073652318776269530687742778270252468765361963007"
),
]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
}
Ok(())
}
}

+ 96
- 0
arithmetic/src/util.rs

@ -0,0 +1,96 @@
use ark_ff::PrimeField;
use ark_std::log2;
/// Decompose an integer into a binary vector in little endian.
pub fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
/// given the evaluation input `point` of the `index`-th polynomial,
/// obtain the evaluation point in the merged polynomial
pub fn gen_eval_point<F: PrimeField>(index: usize, index_len: usize, point: &[F]) -> Vec<F> {
let index_vec: Vec<F> = bit_decompose(index as u64, index_len)
.into_iter()
.map(|x| F::from(x))
.collect();
[point, &index_vec].concat()
}
/// Return the number of variables that one need for an MLE to
/// batch the list of MLEs
#[inline]
pub fn get_batched_nv(num_var: usize, polynomials_len: usize) -> usize {
num_var + log2(polynomials_len) as usize
}
// Input index
// - `i := (i_0, ...i_{n-1})`,
// - `num_vars := n`
// return three elements:
// - `x0 := (i_1, ..., i_{n-1}, 0)`
// - `x1 := (i_1, ..., i_{n-1}, 1)`
// - `sign := i_0`
#[inline]
pub fn get_index(i: usize, num_vars: usize) -> (usize, usize, bool) {
let bit_sequence = bit_decompose(i as u64, num_vars);
// the last bit comes first here because of LE encoding
let x0 = project(&[[false].as_ref(), bit_sequence[..num_vars - 1].as_ref()].concat()) as usize;
let x1 = project(&[[true].as_ref(), bit_sequence[..num_vars - 1].as_ref()].concat()) as usize;
(x0, x1, bit_sequence[num_vars - 1])
}
/// Project a little endian binary vector into an integer.
#[inline]
pub(crate) fn project(input: &[bool]) -> u64 {
let mut res = 0;
for &e in input.iter().rev() {
res <<= 1;
res += e as u64;
}
res
}
#[cfg(test)]
mod test {
use super::{bit_decompose, get_index, project};
use ark_std::{rand::RngCore, test_rng};
#[test]
fn test_decomposition() {
let mut rng = test_rng();
for _ in 0..100 {
let t = rng.next_u64();
let b = bit_decompose(t, 64);
let r = project(&b);
assert_eq!(t, r)
}
}
#[test]
fn test_get_index() {
let a = 0b1010;
let (x0, x1, sign) = get_index(a, 4);
assert_eq!(x0, 0b0100);
assert_eq!(x1, 0b0101);
assert!(sign);
let (x0, x1, sign) = get_index(a, 5);
assert_eq!(x0, 0b10100);
assert_eq!(x1, 0b10101);
assert!(!sign);
let a = 0b1111;
let (x0, x1, sign) = get_index(a, 4);
assert_eq!(x0, 0b1110);
assert_eq!(x1, 0b1111);
assert!(sign);
}
}

+ 1
- 37
arithmetic/src/virtual_polynomial.rs

@ -1,7 +1,7 @@
//! This module defines our main mathematical object `VirtualPolynomial`; and
//! various functions associated with it.
use crate::{errors::ArithErrors, multilinear_polynomial::random_zero_mle_list};
use crate::{errors::ArithErrors, multilinear_polynomial::random_zero_mle_list, random_mle_list};
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_serialize::{CanonicalSerialize, SerializationError, Write};
@ -324,42 +324,6 @@ impl VirtualPolynomial {
}
}
/// Sample a random list of multilinear polynomials.
/// Returns
/// - the list of polynomials,
/// - its sum of polynomial evaluations over the boolean hypercube.
fn random_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> (Vec<Rc<DenseMultilinearExtension<F>>>, F) {
let start = start_timer!(|| "sample random mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
let mut sum = F::zero();
for _ in 0..(1 << nv) {
let mut product = F::one();
for e in multiplicands.iter_mut() {
let val = F::rand(rng);
e.push(val);
product *= val;
}
sum += product;
}
let list = multiplicands
.into_iter()
.map(|x| Rc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
(list, sum)
}
// This function build the eq(x, r) polynomial for any given r.
//
// Evaluate

+ 23
- 8
hyperplonk/Cargo.toml

@ -6,7 +6,6 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
poly-iop = { path = "../poly-iop" }
ark-std = { version = "^0.3.0", default-features = false }
ark-ec = { version = "^0.3.0", default-features = false }
@ -15,33 +14,49 @@ ark-poly = { version = "^0.3.0", default-features = false }
ark-serialize = { version = "^0.3.0", default-features = false, features = [ "derive" ] }
displaydoc = { version = "0.2.3", default-features = false }
poly-iop = { path = "../poly-iop" }
pcs = { path = "../pcs" }
transcript = { path = "../transcript" }
arithmetic = { path = "../arithmetic" }
util = { path = "../util" }
jf-primitives = { git = "https://github.com/EspressoSystems/jellyfish", rev = "ff43209" }
rayon = { version = "1.5.2", default-features = false, optional = true }
[dev-dependencies]
ark-bls12-381 = { version = "0.3.0", default-features = false, features = [ "curve" ] }
# Benchmarks
[[bench]]
name = "hyperplonk-benches"
path = "benches/bench.rs"
harness = false
[features]
# default = [ "parallel", "print-trace", "extensive_sanity_checks" ]
default = [ "parallel", "extensive_sanity_checks" ]
# default = [ ]
default = [ "parallel" ]
# default = [ "parallel", "print-trace" ]
# default = [ "parallel", "extensive_sanity_checks" ]
bench = [ "parallel" ]
# extensive sanity checks that are useful for debugging
extensive_sanity_checks = [ ]
extensive_sanity_checks = [
"poly-iop/extensive_sanity_checks",
"pcs/extensive_sanity_checks",
]
parallel = [
"rayon",
"ark-std/parallel",
"ark-ff/parallel",
"ark-poly/parallel",
"ark-ec/parallel",
"poly-iop/parallel",
"arithmetic/parallel",
"jf-primitives/parallel",
"pcs/parallel",
"util/parallel"
]
print-trace = [
"ark-std/print-trace",
"poly-iop/print-trace",
"arithmetic/print-trace",
"jf-primitives/print-trace",
]

+ 149
- 0
hyperplonk/benches/bench.rs

@ -0,0 +1,149 @@
use std::{env, fs::File, time::Instant};
use ark_bls12_381::{Bls12_381, Fr};
use ark_serialize::Write;
use ark_std::test_rng;
use hyperplonk::{
prelude::{CustomizedGates, HyperPlonkErrors, MockCircuit},
HyperPlonkSNARK,
};
use pcs::{
prelude::{MultilinearKzgPCS, MultilinearUniversalParams, UnivariateUniversalParams},
PolynomialCommitmentScheme,
};
use poly_iop::PolyIOP;
use rayon::ThreadPoolBuilder;
fn main() -> Result<(), HyperPlonkErrors> {
let args: Vec<String> = env::args().collect();
let thread = args[1].parse().unwrap_or(12);
ThreadPoolBuilder::new()
.num_threads(thread)
.build_global()
.unwrap();
bench_vanilla_plonk(thread)?;
for degree in [1, 2, 4, 8, 16, 32] {
bench_high_degree_plonk(degree, thread)?;
}
Ok(())
}
fn bench_vanilla_plonk(thread: usize) -> Result<(), HyperPlonkErrors> {
let mut rng = test_rng();
let pcs_srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, 22)?;
let filename = format!("vanilla nv {}.txt", thread);
let mut file = File::create(filename).unwrap();
for nv in 1..16 {
let vanilla_gate = CustomizedGates::vanilla_plonk_gate();
bench_mock_circuit_zkp_helper(&mut file, nv, &vanilla_gate, &pcs_srs)?;
}
Ok(())
}
fn bench_high_degree_plonk(degree: usize, thread: usize) -> Result<(), HyperPlonkErrors> {
let mut rng = test_rng();
let pcs_srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, 22)?;
let filename = format!("high degree {} thread {}.txt", degree, thread);
let mut file = File::create(filename).unwrap();
for nv in 1..16 {
let vanilla_gate = CustomizedGates::vanilla_plonk_gate();
bench_mock_circuit_zkp_helper(&mut file, nv, &vanilla_gate, &pcs_srs)?;
}
Ok(())
}
fn bench_mock_circuit_zkp_helper(
file: &mut File,
nv: usize,
gate: &CustomizedGates,
pcs_srs: &(
MultilinearUniversalParams<Bls12_381>,
UnivariateUniversalParams<Bls12_381>,
),
) -> Result<(), HyperPlonkErrors> {
let repetition = if nv < 10 {
10
} else if nv < 20 {
5
} else {
2
};
//==========================================================
let start = Instant::now();
for _ in 0..repetition {
let circuit = MockCircuit::<Fr>::new(1 << nv, gate);
assert!(circuit.is_satisfied());
}
println!(
"mock circuit gen for {} variables: {} ns",
nv,
start.elapsed().as_nanos() / repetition as u128
);
let circuit = MockCircuit::<Fr>::new(1 << nv, gate);
assert!(circuit.is_satisfied());
let index = circuit.index;
//==========================================================
// generate pk and vks
let start = Instant::now();
for _ in 0..repetition {
let (_pk, _vk) = <PolyIOP<Fr> as HyperPlonkSNARK<
Bls12_381,
MultilinearKzgPCS<Bls12_381>,
>>::preprocess(&index, &pcs_srs)?;
}
println!(
"key extraction for {} variables: {} us",
nv,
start.elapsed().as_micros() / repetition as u128
);
let (pk, vk) =
<PolyIOP<Fr> as HyperPlonkSNARK<Bls12_381, MultilinearKzgPCS<Bls12_381>>>::preprocess(
&index, &pcs_srs,
)?;
//==========================================================
// generate a proof
let start = Instant::now();
for _ in 0..repetition {
let _proof =
<PolyIOP<Fr> as HyperPlonkSNARK<Bls12_381, MultilinearKzgPCS<Bls12_381>>>::prove(
&pk,
&circuit.witnesses[0].coeff_ref(),
&circuit.witnesses,
)?;
}
let t = start.elapsed().as_micros() / repetition as u128;
println!("proving for {} variables: {} us", nv, t);
file.write_all(format!("{} {}\n", nv, t).as_ref()).unwrap();
let proof = <PolyIOP<Fr> as HyperPlonkSNARK<Bls12_381, MultilinearKzgPCS<Bls12_381>>>::prove(
&pk,
&circuit.witnesses[0].coeff_ref(),
&circuit.witnesses,
)?;
//==========================================================
// verify a proof
let start = Instant::now();
for _ in 0..repetition {
let verify =
<PolyIOP<Fr> as HyperPlonkSNARK<Bls12_381, MultilinearKzgPCS<Bls12_381>>>::verify(
&vk,
&circuit.witnesses[0].coeff_ref(),
&proof,
)?;
assert!(verify);
}
println!(
"verifying for {} variables: {} us",
nv,
start.elapsed().as_micros() / repetition as u128
);
Ok(())
}

+ 158
- 0
hyperplonk/src/custom_gate.rs

@ -0,0 +1,158 @@
use ark_std::cmp::max;
/// Customized gate is a list of tuples of
/// (coefficient, selector_index, wire_indices)
///
/// Example:
/// q_L(X) * W_1(X)^5 - W_2(X) = 0
/// is represented as
/// vec![
/// ( 1, Some(id_qL), vec![id_W1, id_W1, id_W1, id_W1, id_W1]),
/// (-1, None, vec![id_W2])
/// ]
///
/// CustomizedGates {
/// gates: vec![
/// (1, Some(0), vec![0, 0, 0, 0, 0]),
/// (-1, None, vec![1])
/// ],
/// };
/// where id_qL = 0 // first selector
/// id_W1 = 0 // first witness
/// id_w2 = 1 // second witness
///
/// NOTE: here coeff is a signed integer, instead of a field element
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct CustomizedGates {
pub(crate) gates: Vec<(i64, Option<usize>, Vec<usize>)>,
}
impl CustomizedGates {
/// The degree of the algebraic customized gate
pub fn degree(&self) -> usize {
let mut res = 0;
for x in self.gates.iter() {
res = max(res, x.2.len() + (x.1.is_some() as usize))
}
res
}
/// The number of selectors in a customized gate
pub fn num_selector_columns(&self) -> usize {
let mut res = 0;
for (_coeff, q, _ws) in self.gates.iter() {
// a same selector must not be used for multiple monomials.
if q.is_some() {
res += 1;
}
}
res
}
/// The number of witnesses in a customized gate
pub fn num_witness_columns(&self) -> usize {
let mut res = 0;
for (_coeff, _q, ws) in self.gates.iter() {
// witness list must be ordered
// so we just need to compare with the last one
if let Some(&p) = ws.last() {
if res < p {
res = p
}
}
}
// add one here because index starts from 0
res + 1
}
/// Return a vanilla plonk gate:
/// ``` ignore
/// q_L w_1 + q_R w_2 + q_O w_3 + q_M w1w2 + q_C = 0
/// ```
/// which is
/// ``` ignore
/// (1, Some(id_qL), vec![id_W1]),
/// (1, Some(id_qR), vec![id_W2]),
/// (1, Some(id_qO), vec![id_W3]),
/// (1, Some(id_qM), vec![id_W1, id_w2]),
/// (1, Some(id_qC), vec![]),
/// ```
pub fn vanilla_plonk_gate() -> Self {
Self {
gates: vec![
(1, Some(0), vec![0]),
(1, Some(1), vec![1]),
(1, Some(2), vec![2]),
(1, Some(3), vec![0, 1]),
(1, Some(4), vec![]),
],
}
}
/// Return a jellyfish turbo plonk gate:
/// ```ignore
/// q_1 w_1 + q_2 w_2 + q_3 w_3 + q_4 w4
/// + q_M1 w1w2 + q_M2 w3w4
/// + q_H1 w1^5 + q_H2 w2^5 + q_H3 w1^5 + q_H4 w2^5
/// + q_E w1w2w3w4
/// + q_O w5
/// + q_C
/// = 0
/// ```
/// with
/// - w = [w1, w2, w3, w4, w5]
/// - q = [ q_1, q_2, q_3, q_4, q_M1, q_M2, q_H1, q_H2, q_H3, q_H4, q_E,
/// q_O, q_c ]
///
/// which is
/// ```ignore
/// (1, Some(q[0]), vec![w[0]]),
/// (1, Some(q[1]), vec![w[1]]),
/// (1, Some(q[2]), vec![w[2]]),
/// (1, Some(q[3]), vec![w[3]]),
/// (1, Some(q[4]), vec![w[0], w[1]]),
/// (1, Some(q[5]), vec![w[2], w[3]]),
/// (1, Some(q[6]), vec![w[0], w[0], w[0], w[0], w[0]]),
/// (1, Some(q[7]), vec![w[1], w[1], w[1], w[1], w[1]]),
/// (1, Some(q[8]), vec![w[2], w[2], w[2], w[2], w[2]]),
/// (1, Some(q[9]), vec![w[3], w[3], w[3], w[3], w[3]]),
/// (1, Some(q[10]), vec![w[0], w[1], w[2], w[3]]),
/// (1, Some(q[11]), vec![w[4]]),
/// (1, Some(q[12]), vec![]),
/// ```
pub fn jellyfish_turbo_plonk_gate() -> Self {
CustomizedGates {
gates: vec![
(1, Some(0), vec![0]),
(1, Some(1), vec![1]),
(1, Some(2), vec![2]),
(1, Some(3), vec![3]),
(1, Some(4), vec![0, 1]),
(1, Some(5), vec![2, 3]),
(1, Some(6), vec![0, 0, 0, 0, 0]),
(1, Some(7), vec![1, 1, 1, 1, 1]),
(1, Some(8), vec![2, 2, 2, 2, 2]),
(1, Some(9), vec![3, 3, 3, 3, 3]),
(1, Some(10), vec![0, 1, 2, 3]),
(1, Some(11), vec![4]),
(1, Some(12), vec![]),
],
}
}
/// Generate a random gate for `num_witness` with a highest degree =
/// `degree`
pub fn mock_gate(num_witness: usize, degree: usize) -> Self {
let mut gates = vec![];
let high_degree_term = vec![0; degree];
gates.push((1, Some(0), high_degree_term));
for i in 1..num_witness {
gates.push((1, Some(i), vec![i]))
}
gates.push((1, Some(num_witness), vec![]));
CustomizedGates { gates }
}
}

+ 7
- 7
hyperplonk/src/errors.rs

@ -4,9 +4,9 @@ use arithmetic::ArithErrors;
use ark_serialize::SerializationError;
use ark_std::string::String;
use displaydoc::Display;
use jf_primitives::pcs::prelude::PCSError;
use pcs::prelude::PCSError;
use poly_iop::prelude::PolyIOPErrors;
use transcript::TranscriptErrors;
use transcript::TranscriptError;
/// A `enum` specifying the possible failure modes of hyperplonk.
#[derive(Display, Debug)]
@ -24,9 +24,9 @@ pub enum HyperPlonkErrors {
/// PolyIOP error {0}
PolyIOPErrors(PolyIOPErrors),
/// PCS error {0}
PCSError(PCSError),
PCSErrors(PCSError),
/// Transcript error {0}
TranscriptError(TranscriptErrors),
TranscriptError(TranscriptError),
/// Arithmetic Error: {0}
ArithmeticErrors(ArithErrors),
}
@ -45,12 +45,12 @@ impl From for HyperPlonkErrors {
impl From<PCSError> for HyperPlonkErrors {
fn from(e: PCSError) -> Self {
Self::PCSError(e)
Self::PCSErrors(e)
}
}
impl From<TranscriptErrors> for HyperPlonkErrors {
fn from(e: TranscriptErrors) -> Self {
impl From<TranscriptError> for HyperPlonkErrors {
fn from(e: TranscriptError) -> Self {
Self::TranscriptError(e)
}
}

+ 9
- 985
hyperplonk/src/lib.rs
File diff suppressed because it is too large
View File


+ 235
- 0
hyperplonk/src/mock.rs

@ -0,0 +1,235 @@
use arithmetic::identity_permutation_mle;
use ark_ff::PrimeField;
use ark_poly::MultilinearExtension;
use ark_std::{log2, test_rng};
use crate::{
custom_gate::CustomizedGates,
selectors::SelectorColumn,
structs::{HyperPlonkIndex, HyperPlonkParams},
witness::WitnessColumn,
};
pub struct MockCircuit<F: PrimeField> {
pub witnesses: Vec<WitnessColumn<F>>,
pub index: HyperPlonkIndex<F>,
}
impl<F: PrimeField> MockCircuit<F> {
/// Number of variables in a multilinear system
pub fn num_variables(&self) -> usize {
self.index.num_variables()
}
/// number of selector columns
pub fn num_selector_columns(&self) -> usize {
self.index.num_selector_columns()
}
/// number of witness columns
pub fn num_witness_columns(&self) -> usize {
self.index.num_witness_columns()
}
}
impl<F: PrimeField> MockCircuit<F> {
/// Generate a mock plonk circuit for the input constraint size.
pub fn new(num_constraints: usize, gate: &CustomizedGates) -> MockCircuit<F> {
let mut rng = test_rng();
let nv = log2(num_constraints);
let num_selectors = gate.num_selector_columns();
let num_witnesses = gate.num_witness_columns();
let log_n_wires = log2(num_witnesses);
let merged_nv = nv + log_n_wires;
let mut selectors: Vec<SelectorColumn<F>> = vec![SelectorColumn::default(); num_selectors];
let mut witnesses: Vec<WitnessColumn<F>> = vec![WitnessColumn::default(); num_witnesses];
for _cs_counter in 0..num_constraints {
let mut cur_selectors: Vec<F> = (0..(num_selectors - 1))
.map(|_| F::rand(&mut rng))
.collect();
let cur_witness: Vec<F> = (0..num_witnesses).map(|_| F::rand(&mut rng)).collect();
let mut last_selector = F::zero();
for (index, (coeff, q, wit)) in gate.gates.iter().enumerate() {
if index != num_selectors - 1 {
let mut cur_monomial = if *coeff < 0 {
-F::from((-coeff) as u64)
} else {
F::from(*coeff as u64)
};
cur_monomial = match q {
Some(p) => cur_monomial * cur_selectors[*p],
None => cur_monomial,
};
for wit_index in wit.iter() {
cur_monomial *= cur_witness[*wit_index];
}
last_selector += cur_monomial;
} else {
let mut cur_monomial = if *coeff < 0 {
-F::from((-coeff) as u64)
} else {
F::from(*coeff as u64)
};
for wit_index in wit.iter() {
cur_monomial *= cur_witness[*wit_index];
}
last_selector /= -cur_monomial;
}
}
cur_selectors.push(last_selector);
for i in 0..num_selectors {
selectors[i].append(cur_selectors[i]);
}
for i in 0..num_witnesses {
witnesses[i].append(cur_witness[i]);
}
}
let params = HyperPlonkParams {
num_constraints,
num_pub_input: num_constraints,
gate_func: gate.clone(),
};
let permutation = identity_permutation_mle(merged_nv as usize).to_evaluations();
let index = HyperPlonkIndex {
params,
permutation,
selectors,
};
Self { witnesses, index }
}
pub fn is_satisfied(&self) -> bool {
for current_row in 0..self.num_variables() {
let mut cur = F::zero();
for (coeff, q, wit) in self.index.params.gate_func.gates.iter() {
let mut cur_monomial = if *coeff < 0 {
-F::from((-coeff) as u64)
} else {
F::from(*coeff as u64)
};
cur_monomial = match q {
Some(p) => cur_monomial * self.index.selectors[*p].0[current_row],
None => cur_monomial,
};
for wit_index in wit.iter() {
cur_monomial *= self.witnesses[*wit_index].0[current_row];
}
cur += cur_monomial;
}
if !cur.is_zero() {
return false;
}
}
true
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::{errors::HyperPlonkErrors, HyperPlonkSNARK};
use ark_bls12_381::{Bls12_381, Fr};
use pcs::{
prelude::{MultilinearKzgPCS, MultilinearUniversalParams, UnivariateUniversalParams},
PolynomialCommitmentScheme,
};
use poly_iop::PolyIOP;
#[test]
fn test_mock_circuit_sat() {
for i in 1..10 {
let vanilla_gate = CustomizedGates::vanilla_plonk_gate();
let circuit = MockCircuit::<Fr>::new(1 << i, &vanilla_gate);
assert!(circuit.is_satisfied());
let jf_gate = CustomizedGates::jellyfish_turbo_plonk_gate();
let circuit = MockCircuit::<Fr>::new(1 << i, &jf_gate);
assert!(circuit.is_satisfied());
for num_witness in 2..10 {
for degree in 1..10 {
let mock_gate = CustomizedGates::mock_gate(num_witness, degree);
let circuit = MockCircuit::<Fr>::new(1 << i, &mock_gate);
assert!(circuit.is_satisfied());
}
}
}
}
fn test_mock_circuit_zkp_helper(
nv: usize,
gate: &CustomizedGates,
pcs_srs: &(
MultilinearUniversalParams<Bls12_381>,
UnivariateUniversalParams<Bls12_381>,
),
) -> Result<(), HyperPlonkErrors> {
let circuit = MockCircuit::<Fr>::new(1 << nv, gate);
assert!(circuit.is_satisfied());
let index = circuit.index;
// generate pk and vks
let (pk, vk) =
<PolyIOP<Fr> as HyperPlonkSNARK<Bls12_381, MultilinearKzgPCS<Bls12_381>>>::preprocess(
&index, &pcs_srs,
)?;
// generate a proof and verify
let proof =
<PolyIOP<Fr> as HyperPlonkSNARK<Bls12_381, MultilinearKzgPCS<Bls12_381>>>::prove(
&pk,
&circuit.witnesses[0].0,
&circuit.witnesses,
)?;
let verify =
<PolyIOP<Fr> as HyperPlonkSNARK<Bls12_381, MultilinearKzgPCS<Bls12_381>>>::verify(
&vk,
&circuit.witnesses[0].0,
&proof,
)?;
assert!(verify);
Ok(())
}
#[test]
fn test_mock_circuit_zkp() -> Result<(), HyperPlonkErrors> {
let mut rng = test_rng();
let pcs_srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, 16)?;
for nv in 1..10 {
let vanilla_gate = CustomizedGates::vanilla_plonk_gate();
test_mock_circuit_zkp_helper(nv, &vanilla_gate, &pcs_srs)?;
}
for nv in 1..10 {
let tubro_gate = CustomizedGates::jellyfish_turbo_plonk_gate();
test_mock_circuit_zkp_helper(nv, &tubro_gate, &pcs_srs)?;
}
let nv = 5;
for num_witness in 2..10 {
for degree in [1, 2, 4, 8, 16] {
let mock_gate = CustomizedGates::mock_gate(num_witness, degree);
test_mock_circuit_zkp_helper(nv, &mock_gate, &pcs_srs)?;
}
}
Ok(())
}
#[test]
fn test_mock_circuit_e2e() -> Result<(), HyperPlonkErrors> {
let mut rng = test_rng();
let pcs_srs = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, 23)?;
let nv = 18;
let vanilla_gate = CustomizedGates::vanilla_plonk_gate();
test_mock_circuit_zkp_helper(nv, &vanilla_gate, &pcs_srs)?;
Ok(())
}
}

+ 4
- 0
hyperplonk/src/prelude.rs

@ -0,0 +1,4 @@
pub use crate::{
custom_gate::CustomizedGates, errors::HyperPlonkErrors, mock::MockCircuit,
selectors::SelectorColumn, witness::WitnessColumn, HyperPlonkSNARK,
};

+ 6
- 1
hyperplonk/src/selectors.rs

@ -9,7 +9,7 @@ use std::rc::Rc;
pub struct SelectorRow<F: PrimeField>(pub(crate) Vec<F>);
/// A column of selectors of length `#constraints`
#[derive(Debug, Clone, PartialEq, Eq)]
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct SelectorColumn<F: PrimeField>(pub(crate) Vec<F>);
impl<F: PrimeField> SelectorColumn<F> {
@ -19,6 +19,11 @@ impl SelectorColumn {
log2(self.0.len()) as usize
}
/// Append a new element to the selector column
pub fn append(&mut self, new_element: F) {
self.0.push(new_element)
}
/// Build selector columns from rows
pub fn from_selector_rows(
selector_rows: &[SelectorRow<F>],

+ 829
- 0
hyperplonk/src/snark.rs

@ -0,0 +1,829 @@
use crate::{
errors::HyperPlonkErrors,
structs::{HyperPlonkIndex, HyperPlonkProof, HyperPlonkProvingKey, HyperPlonkVerifyingKey},
utils::{build_f, eval_f, prover_sanity_check, PcsAccumulator},
witness::WitnessColumn,
HyperPlonkSNARK,
};
use arithmetic::{
evaluate_opt, gen_eval_point, identity_permutation_mle, merge_polynomials, VPAuxInfo,
};
use ark_ec::PairingEngine;
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, log2, start_timer, One, Zero};
use pcs::prelude::{compute_qx_degree, PolynomialCommitmentScheme};
use poly_iop::{
prelude::{PermutationCheck, ZeroCheck},
PolyIOP,
};
use std::{cmp::max, marker::PhantomData, rc::Rc};
use transcript::IOPTranscript;
impl<E, PCS> HyperPlonkSNARK<E, PCS> for PolyIOP<E::Fr>
where
E: PairingEngine,
// Ideally we want to access polynomial as PCS::Polynomial, instead of instantiating it here.
// But since PCS::Polynomial can be both univariate or multivariate in our implementation
// we cannot bound PCS::Polynomial with a property trait bound.
PCS: PolynomialCommitmentScheme<
E,
Polynomial = Rc<DenseMultilinearExtension<E::Fr>>,
Point = Vec<E::Fr>,
Evaluation = E::Fr,
>,
{
type Index = HyperPlonkIndex<E::Fr>;
type ProvingKey = HyperPlonkProvingKey<E, PCS>;
type VerifyingKey = HyperPlonkVerifyingKey<E, PCS>;
type Proof = HyperPlonkProof<E, Self, PCS>;
fn preprocess(
index: &Self::Index,
pcs_srs: &PCS::SRS,
) -> Result<(Self::ProvingKey, Self::VerifyingKey), HyperPlonkErrors> {
let num_vars = index.num_variables();
let log_num_witness_polys = log2(index.num_witness_columns()) as usize;
let log_num_selector_polys = log2(index.num_selector_columns()) as usize;
let witness_merged_nv = num_vars + log_num_witness_polys;
let selector_merged_nv = num_vars + log_num_selector_polys;
let max_nv = max(witness_merged_nv + 1, selector_merged_nv);
let max_points = max(
// prod(x) has 5 points
5,
max(
// selector points
index.num_selector_columns(),
// witness points + public input point + perm point
index.num_witness_columns() + 2,
),
);
let supported_uni_degree = compute_qx_degree(max_nv, max_points);
let supported_ml_degree = max_nv;
// extract PCS prover and verifier keys from SRS
let (pcs_prover_param, pcs_verifier_param) =
PCS::trim(pcs_srs, supported_uni_degree, Some(supported_ml_degree))?;
// build permutation oracles
let permutation_oracle = Rc::new(DenseMultilinearExtension::from_evaluations_slice(
witness_merged_nv,
&index.permutation,
));
let perm_com = PCS::commit(&pcs_prover_param, &permutation_oracle)?;
// build selector oracles and commit to it
let selector_oracles: Vec<Rc<DenseMultilinearExtension<E::Fr>>> = index
.selectors
.iter()
.map(|s| Rc::new(DenseMultilinearExtension::from(s)))
.collect();
let selector_merged = merge_polynomials(&selector_oracles)?;
let selector_com = PCS::commit(&pcs_prover_param, &selector_merged)?;
Ok((
Self::ProvingKey {
params: index.params.clone(),
permutation_oracle: permutation_oracle.clone(),
selector_oracles,
selector_com: selector_com.clone(),
pcs_param: pcs_prover_param,
},
Self::VerifyingKey {
params: index.params.clone(),
permutation_oracle,
pcs_param: pcs_verifier_param,
selector_com,
perm_com,
},
))
}
/// Generate HyperPlonk SNARK proof.
///
/// Inputs:
/// - `pk`: circuit proving key
/// - `pub_input`: online public input of length 2^\ell
/// - `witness`: witness assignment of length 2^n
/// Outputs:
/// - The HyperPlonk SNARK proof.
///
/// Steps:
///
/// 1. Commit Witness polynomials `w_i(x)` and append commitment to
/// transcript
///
/// 2. Run ZeroCheck on
///
/// `f(q_0(x),...q_l(x), w_0(x),...w_d(x))`
///
/// where `f` is the constraint polynomial i.e.,
/// ```ignore
/// f(q_l, q_r, q_m, q_o, w_a, w_b, w_c)
/// = q_l w_a(x) + q_r w_b(x) + q_m w_a(x)w_b(x) - q_o w_c(x)
/// ```
/// in vanilla plonk, and obtain a ZeroCheckSubClaim
///
/// 3. Run permutation check on `\{w_i(x)\}` and `permutation_oracle`, and
/// obtain a PermCheckSubClaim.
///
/// 4. Generate evaluations and corresponding proofs
/// - 4.1. (deferred) batch opening prod(x) at
/// - [0, perm_check_point]
/// - [1, perm_check_point]
/// - [perm_check_point, 0]
/// - [perm_check_point, 1]
/// - [1,...1, 0]
///
/// - 4.2. permutation check evaluations and proofs
/// - 4.2.1. (deferred) wi_poly(perm_check_point)
///
/// - 4.3. zero check evaluations and proofs
/// - 4.3.1. (deferred) wi_poly(zero_check_point)
/// - 4.3.2. (deferred) selector_poly(zero_check_point)
///
/// - 4.4. public input consistency checks
/// - pi_poly(r_pi) where r_pi is sampled from transcript
///
/// - 5. deferred batch opening
fn prove(
pk: &Self::ProvingKey,
pub_input: &[E::Fr],
witnesses: &[WitnessColumn<E::Fr>],
) -> Result<Self::Proof, HyperPlonkErrors> {
let start = start_timer!(|| "hyperplonk proving");
let mut transcript = IOPTranscript::<E::Fr>::new(b"hyperplonk");
prover_sanity_check(&pk.params, pub_input, witnesses)?;
// witness assignment of length 2^n
let num_vars = pk.params.num_variables();
let log_num_witness_polys = log2(pk.params.num_witness_columns()) as usize;
let log_num_selector_polys = log2(pk.params.num_selector_columns()) as usize;
// number of variables in merged polynomial for Multilinear-KZG
let merged_nv = num_vars + log_num_witness_polys;
// online public input of length 2^\ell
let ell = log2(pk.params.num_pub_input) as usize;
// We use accumulators to store the polynomials and their eval points.
// They are batch opened at a later stage.
// This includes
// - witnesses
// - prod(x)
// - selectors
//
// Accumulator for w_merged and its points
let mut w_merged_pcs_acc = PcsAccumulator::<E, PCS>::new();
// Accumulator for prod(x) and its points
let mut prod_pcs_acc = PcsAccumulator::<E, PCS>::new();
// Accumulator for prod(x) and its points
let mut selector_pcs_acc = PcsAccumulator::<E, PCS>::new();
let witness_polys: Vec<Rc<DenseMultilinearExtension<E::Fr>>> = witnesses
.iter()
.map(|w| Rc::new(DenseMultilinearExtension::from(w)))
.collect();
// =======================================================================
// 1. Commit Witness polynomials `w_i(x)` and append commitment to
// transcript
// =======================================================================
let step = start_timer!(|| "commit witnesses");
let w_merged = merge_polynomials(&witness_polys)?;
if w_merged.num_vars != merged_nv {
return Err(HyperPlonkErrors::InvalidParameters(format!(
"merged witness poly has a different num_vars ({}) from expected ({})",
w_merged.num_vars, merged_nv
)));
}
let w_merged_com = PCS::commit(&pk.pcs_param, &w_merged)?;
w_merged_pcs_acc.init_poly(w_merged.clone(), w_merged_com.clone())?;
transcript.append_serializable_element(b"w", &w_merged_com)?;
end_timer!(step);
// =======================================================================
// 2 Run ZeroCheck on
//
// `f(q_0(x),...q_l(x), w_0(x),...w_d(x))`
//
// where `f` is the constraint polynomial i.e.,
//
// f(q_l, q_r, q_m, q_o, w_a, w_b, w_c)
// = q_l w_a(x) + q_r w_b(x) + q_m w_a(x)w_b(x) - q_o w_c(x)
//
// in vanilla plonk, and obtain a ZeroCheckSubClaim
// =======================================================================
let step = start_timer!(|| "ZeroCheck on f");
let fx = build_f(
&pk.params.gate_func,
pk.params.num_variables(),
&pk.selector_oracles,
&witness_polys,
)?;
let zero_check_proof = <Self as ZeroCheck<E::Fr>>::prove(&fx, &mut transcript)?;
end_timer!(step);
// =======================================================================
// 3. Run permutation check on `\{w_i(x)\}` and `permutation_oracle`, and
// obtain a PermCheckSubClaim.
// =======================================================================
let step = start_timer!(|| "Permutation check on w_i(x)");
let (perm_check_proof, prod_x) = <Self as PermutationCheck<E, PCS>>::prove(
&pk.pcs_param,
&w_merged,
&w_merged,
&pk.permutation_oracle,
&mut transcript,
)?;
let perm_check_point = &perm_check_proof.zero_check_proof.point;
end_timer!(step);
// =======================================================================
// 4. Generate evaluations and corresponding proofs
// - 4.1. (deferred) batch opening prod(x) at
// - [0, perm_check_point]
// - [1, perm_check_point]
// - [perm_check_point, 0]
// - [perm_check_point, 1]
// - [1,...1, 0]
//
// - 4.2. permutation check evaluations and proofs
// - 4.2.1. (deferred) wi_poly(perm_check_point)
//
// - 4.3. zero check evaluations and proofs
// - 4.3.1. (deferred) wi_poly(zero_check_point)
// - 4.3.2. (deferred) selector_poly(zero_check_point)
//
// - 4.4. (deferred) public input consistency checks
// - pi_poly(r_pi) where r_pi is sampled from transcript
// =======================================================================
let step = start_timer!(|| "opening and evaluations");
// 4.1 (deferred) open prod(0,x), prod(1, x), prod(x, 0), prod(x, 1)
// perm_check_point
prod_pcs_acc.init_poly(prod_x, perm_check_proof.prod_x_comm.clone())?;
// prod(0, x)
let tmp_point1 = [perm_check_point.as_slice(), &[E::Fr::zero()]].concat();
// prod(1, x)
let tmp_point2 = [perm_check_point.as_slice(), &[E::Fr::one()]].concat();
// prod(x, 0)
let tmp_point3 = [&[E::Fr::zero()], perm_check_point.as_slice()].concat();
// prod(x, 1)
let tmp_point4 = [&[E::Fr::one()], perm_check_point.as_slice()].concat();
// prod(1, ..., 1, 0)
let tmp_point5 = [vec![E::Fr::zero()], vec![E::Fr::one(); merged_nv]].concat();
prod_pcs_acc.insert_point(&tmp_point1);
prod_pcs_acc.insert_point(&tmp_point2);
prod_pcs_acc.insert_point(&tmp_point3);
prod_pcs_acc.insert_point(&tmp_point4);
prod_pcs_acc.insert_point(&tmp_point5);
// 4.2 permutation check
// - 4.2.1. (deferred) wi_poly(perm_check_point)
w_merged_pcs_acc.insert_point(perm_check_point);
#[cfg(feature = "extensive_sanity_checks")]
{
// sanity check
let eval = pk
.permutation_oracle
.evaluate(&perm_check_proof.zero_check_proof.point)
.ok_or_else(|| {
HyperPlonkErrors::InvalidParameters(
"perm_oracle evaluation dimension does not match".to_string(),
)
})?;
if eval != perm_oracle_eval {
return Err(HyperPlonkErrors::InvalidProver(
"perm_oracle evaluation is different from PCS opening".to_string(),
));
}
}
// - 4.3. zero check evaluations and proofs
// - 4.3.1 (deferred) wi_poly(zero_check_point)
for i in 0..witness_polys.len() {
let tmp_point = gen_eval_point(i, log_num_witness_polys, &zero_check_proof.point);
// Deferred opening zero check proof
w_merged_pcs_acc.insert_point(&tmp_point);
}
// - 4.3.2. (deferred) selector_poly(zero_check_point)
let selector_merged = merge_polynomials(&pk.selector_oracles)?;
selector_pcs_acc.init_poly(selector_merged, pk.selector_com.clone())?;
for i in 0..pk.selector_oracles.len() {
let tmp_point = gen_eval_point(i, log_num_selector_polys, &zero_check_proof.point);
// Deferred opening zero check proof
selector_pcs_acc.insert_point(&tmp_point);
}
// - 4.4. public input consistency checks
// - pi_poly(r_pi) where r_pi is sampled from transcript
let r_pi = transcript.get_and_append_challenge_vectors(b"r_pi", ell)?;
let tmp_point = [
vec![E::Fr::zero(); num_vars - ell],
r_pi,
vec![E::Fr::zero(); log_num_witness_polys],
]
.concat();
w_merged_pcs_acc.insert_point(&tmp_point);
#[cfg(feature = "extensive_sanity_checks")]
{
// sanity check
let pi_poly = Rc::new(DenseMultilinearExtension::from_evaluations_slice(
ell, pub_input,
));
let eval = pi_poly.evaluate(&r_pi).ok_or_else(|| {
HyperPlonkErrors::InvalidParameters(
"public input evaluation dimension does not match".to_string(),
)
})?;
if eval != pi_eval {
return Err(HyperPlonkErrors::InvalidProver(
"public input evaluation is different from PCS opening".to_string(),
));
}
}
end_timer!(step);
// =======================================================================
// 5. deferred batch opening
// =======================================================================
let step = start_timer!(|| "deferred batch openings");
let sub_step = start_timer!(|| "open witness");
let (w_merged_batch_opening, w_merged_batch_evals) =
w_merged_pcs_acc.batch_open(&pk.pcs_param)?;
end_timer!(sub_step);
let sub_step = start_timer!(|| "open prod(x)");
let (prod_batch_openings, prod_batch_evals) = prod_pcs_acc.batch_open(&pk.pcs_param)?;
end_timer!(sub_step);
let sub_step = start_timer!(|| "open selector");
let (selector_batch_opening, selector_batch_evals) =
selector_pcs_acc.batch_open(&pk.pcs_param)?;
end_timer!(sub_step);
end_timer!(step);
end_timer!(start);
Ok(HyperPlonkProof {
// =======================================================================
// witness related
// =======================================================================
/// PCS commit for witnesses
w_merged_com,
// Batch opening for witness commitment
// - PermCheck eval: 1 point
// - ZeroCheck evals: #witness points
// - public input eval: 1 point
w_merged_batch_opening,
// Evaluations of Witness
// - PermCheck eval: 1 point
// - ZeroCheck evals: #witness points
// - public input eval: 1 point
w_merged_batch_evals,
// =======================================================================
// prod(x) related
// =======================================================================
// prod(x)'s openings
// - prod(0, x),
// - prod(1, x),
// - prod(x, 0),
// - prod(x, 1),
// - prod(1, ..., 1,0)
prod_batch_openings,
// prod(x)'s evaluations
// - prod(0, x),
// - prod(1, x),
// - prod(x, 0),
// - prod(x, 1),
// - prod(1, ..., 1,0)
prod_batch_evals,
// =======================================================================
// selectors related
// =======================================================================
// PCS openings for selectors on zero check point
selector_batch_opening,
// Evaluates of selectors on zero check point
selector_batch_evals,
// =======================================================================
// IOP proofs
// =======================================================================
// the custom gate zerocheck proof
zero_check_proof,
// the permutation check proof for copy constraints
perm_check_proof,
})
}
/// Verify the HyperPlonk proof.
///
/// Inputs:
/// - `vk`: verification key
/// - `pub_input`: online public input
/// - `proof`: HyperPlonk SNARK proof
/// Outputs:
/// - Return a boolean on whether the verification is successful
///
/// 1. Verify zero_check_proof on
///
/// `f(q_0(x),...q_l(x), w_0(x),...w_d(x))`
///
/// where `f` is the constraint polynomial i.e.,
/// ```ignore
/// f(q_l, q_r, q_m, q_o, w_a, w_b, w_c)
/// = q_l w_a(x) + q_r w_b(x) + q_m w_a(x)w_b(x) - q_o w_c(x)
/// ```
/// in vanilla plonk, and obtain a ZeroCheckSubClaim
///
/// 2. Verify perm_check_proof on `\{w_i(x)\}` and `permutation_oracle`
///
/// 3. check subclaim validity
///
/// 4. Verify the opening against the commitment:
/// - check permutation check evaluations
/// - check zero check evaluations
/// - public input consistency checks
fn verify(
vk: &Self::VerifyingKey,
pub_input: &[E::Fr],
proof: &Self::Proof,
) -> Result<bool, HyperPlonkErrors> {
let start = start_timer!(|| "hyperplonk verification");
let mut transcript = IOPTranscript::<E::Fr>::new(b"hyperplonk");
// witness assignment of length 2^n
let num_vars = vk.params.num_variables();
let log_num_witness_polys = log2(vk.params.num_witness_columns()) as usize;
// number of variables in merged polynomial for Multilinear-KZG
let merged_nv = num_vars + log_num_witness_polys;
// online public input of length 2^\ell
let ell = log2(vk.params.num_pub_input) as usize;
let pi_poly = DenseMultilinearExtension::from_evaluations_slice(ell as usize, pub_input);
// =======================================================================
// 0. sanity checks
// =======================================================================
// public input length
if pub_input.len() != vk.params.num_pub_input {
return Err(HyperPlonkErrors::InvalidProver(format!(
"Public input length is not correct: got {}, expect {}",
pub_input.len(),
1 << ell
)));
}
if proof.selector_batch_evals.len() - 1 != vk.params.num_selector_columns() {
return Err(HyperPlonkErrors::InvalidVerifier(format!(
"Selector length is not correct: got {}, expect {}",
proof.selector_batch_evals.len() - 1,
1 << vk.params.num_selector_columns()
)));
}
if proof.w_merged_batch_evals.len() != vk.params.num_witness_columns() + 3 {
return Err(HyperPlonkErrors::InvalidVerifier(format!(
"Witness length is not correct: got {}, expect {}",
proof.w_merged_batch_evals.len() - 3,
vk.params.num_witness_columns()
)));
}
if proof.prod_batch_evals.len() - 1 != 5 {
return Err(HyperPlonkErrors::InvalidVerifier(format!(
"the number of product polynomial evaluations is not correct: got {}, expect {}",
proof.prod_batch_evals.len() - 1,
5
)));
}
// =======================================================================
// 1. Verify zero_check_proof on
// `f(q_0(x),...q_l(x), w_0(x),...w_d(x))`
//
// where `f` is the constraint polynomial i.e.,
//
// f(q_l, q_r, q_m, q_o, w_a, w_b, w_c)
// = q_l w_a(x) + q_r w_b(x) + q_m w_a(x)w_b(x) - q_o w_c(x)
//
// =======================================================================
let step = start_timer!(|| "verify zero check");
// Zero check and perm check have different AuxInfo
let zero_check_aux_info = VPAuxInfo::<E::Fr> {
max_degree: vk.params.gate_func.degree(),
num_variables: num_vars,
phantom: PhantomData::default(),
};
// push witness to transcript
transcript.append_serializable_element(b"w", &proof.w_merged_com)?;
let zero_check_sub_claim = <Self as ZeroCheck<E::Fr>>::verify(
&proof.zero_check_proof,
&zero_check_aux_info,
&mut transcript,
)?;
let zero_check_point = &zero_check_sub_claim.point;
// check zero check subclaim
let f_eval = eval_f(
&vk.params.gate_func,
&proof.selector_batch_evals[..vk.params.num_selector_columns()],
&proof.w_merged_batch_evals[1..],
)?;
if f_eval != zero_check_sub_claim.expected_evaluation {
return Err(HyperPlonkErrors::InvalidProof(
"zero check evaluation failed".to_string(),
));
}
end_timer!(step);
// =======================================================================
// 2. Verify perm_check_proof on `\{w_i(x)\}` and `permutation_oracle`
// =======================================================================
let step = start_timer!(|| "verify permutation check");
// Zero check and perm check have different AuxInfo
let perm_check_aux_info = VPAuxInfo::<E::Fr> {
// Prod(x) has a max degree of 2
max_degree: 2,
// degree of merged poly
num_variables: merged_nv,
phantom: PhantomData::default(),
};
let perm_check_sub_claim = <Self as PermutationCheck<E, PCS>>::verify(
&proof.perm_check_proof,
&perm_check_aux_info,
&mut transcript,
)?;
let perm_check_point = &perm_check_sub_claim
.product_check_sub_claim
.zero_check_sub_claim
.point;
let alpha = perm_check_sub_claim.product_check_sub_claim.alpha;
let (beta, gamma) = perm_check_sub_claim.challenges;
// check perm check subclaim:
// proof.witness_perm_check_eval ?= perm_check_sub_claim.expected_eval
//
// Q(x) := prod(1,x) - prod(x, 0) * prod(x, 1)
// + alpha * (
// (g(x) + beta * s_perm(x) + gamma) * prod(0, x)
// - (f(x) + beta * s_id(x) + gamma))
// where
// - Q(x) is perm_check_sub_claim.zero_check.exp_eval
// - prod(1, x) ... from prod(x) evaluated over (1, zero_point)
// - g(x), f(x) are both w_merged over (zero_point)
// - s_perm(x) and s_id(x) from vk_param.perm_oracle
// - alpha, beta, gamma from challenge
// we evaluate MLE directly instead of using s_id/s_perm PCS verify
// Verification takes n pairings while evaluate takes 2^n field ops.
let s_id = identity_permutation_mle::<E::Fr>(perm_check_point.len());
let s_id_eval = evaluate_opt(&s_id, perm_check_point);
let s_perm_eval = evaluate_opt(&vk.permutation_oracle, perm_check_point);
let q_x_rec = proof.prod_batch_evals[1]
- proof.prod_batch_evals[2] * proof.prod_batch_evals[3]
+ alpha
* ((proof.w_merged_batch_evals[0] + beta * s_perm_eval + gamma)
* proof.prod_batch_evals[0]
- (proof.w_merged_batch_evals[0] + beta * s_id_eval + gamma));
if q_x_rec
!= perm_check_sub_claim
.product_check_sub_claim
.zero_check_sub_claim
.expected_evaluation
{
return Err(HyperPlonkErrors::InvalidVerifier(
"evaluation failed".to_string(),
));
}
end_timer!(step);
// =======================================================================
// 3. Verify the opening against the commitment
// =======================================================================
let step = start_timer!(|| "verify commitments");
// =======================================================================
// 3.1 open prod(x)' evaluations
// =======================================================================
let prod_final_query = perm_check_sub_claim.product_check_sub_claim.final_query;
let points = [
[perm_check_point.as_slice(), &[E::Fr::zero()]].concat(),
[perm_check_point.as_slice(), &[E::Fr::one()]].concat(),
[&[E::Fr::zero()], perm_check_point.as_slice()].concat(),
[&[E::Fr::one()], perm_check_point.as_slice()].concat(),
prod_final_query.0,
];
if !PCS::batch_verify_single_poly(
&vk.pcs_param,
&proof.perm_check_proof.prod_x_comm,
&points,
&proof.prod_batch_evals,
&proof.prod_batch_openings,
)? {
return Err(HyperPlonkErrors::InvalidProof(
"prod(0, x) pcs verification failed".to_string(),
));
}
// =======================================================================
// 3.2 open selectors' evaluations
// =======================================================================
let log_num_selector_polys = log2(vk.params.num_selector_columns()) as usize;
let mut points = vec![];
for i in 0..vk.params.num_selector_columns() {
let tmp_point =
gen_eval_point(i, log_num_selector_polys, &proof.zero_check_proof.point);
points.push(tmp_point);
}
if !PCS::batch_verify_single_poly(
&vk.pcs_param,
&vk.selector_com,
&points,
&proof.selector_batch_evals,
&proof.selector_batch_opening,
)? {
return Err(HyperPlonkErrors::InvalidProof(
"selector pcs verification failed".to_string(),
));
}
// =======================================================================
// 3.2 open witnesses' evaluations
// =======================================================================
let mut r_pi = transcript.get_and_append_challenge_vectors(b"r_pi", ell)?;
let pi_eval = evaluate_opt(&pi_poly, &r_pi);
assert_eq!(
pi_eval,
proof.w_merged_batch_evals[proof.w_merged_batch_evals.len() - 2]
);
r_pi = [
vec![E::Fr::zero(); num_vars - ell],
r_pi,
vec![E::Fr::zero(); log_num_witness_polys],
]
.concat();
let mut points = vec![perm_check_point.clone()];
for i in 0..proof.w_merged_batch_evals.len() - 3 {
points.push(gen_eval_point(i, log_num_witness_polys, zero_check_point))
}
points.push(r_pi);
if !PCS::batch_verify_single_poly(
&vk.pcs_param,
&proof.w_merged_com,
&points,
&proof.w_merged_batch_evals,
&proof.w_merged_batch_opening,
)? {
return Err(HyperPlonkErrors::InvalidProof(
"witness for permutation check pcs verification failed".to_string(),
));
}
end_timer!(step);
end_timer!(start);
Ok(true)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
custom_gate::CustomizedGates, selectors::SelectorColumn, structs::HyperPlonkParams,
witness::WitnessColumn,
};
use arithmetic::random_permutation_mle;
use ark_bls12_381::Bls12_381;
use ark_std::test_rng;
use pcs::prelude::MultilinearKzgPCS;
#[test]
fn test_hyperplonk_e2e() -> Result<(), HyperPlonkErrors> {
// Example:
// q_L(X) * W_1(X)^5 - W_2(X) = 0
// is represented as
// vec![
// ( 1, Some(id_qL), vec![id_W1, id_W1, id_W1, id_W1, id_W1]),
// (-1, None, vec![id_W2])
// ]
//
// 4 public input
// 1 selector,
// 2 witnesses,
// 2 variables for MLE,
// 4 wires,
let gates = CustomizedGates {
gates: vec![(1, Some(0), vec![0, 0, 0, 0, 0]), (-1, None, vec![1])],
};
test_hyperplonk_helper::<Bls12_381>(gates)
}
fn test_hyperplonk_helper<E: PairingEngine>(
gate_func: CustomizedGates,
) -> Result<(), HyperPlonkErrors> {
let mut rng = test_rng();
let pcs_srs = MultilinearKzgPCS::<E>::gen_srs_for_testing(&mut rng, 16)?;
let num_constraints = 4;
let num_pub_input = 4;
let nv = log2(num_constraints) as usize;
let merged_nv = nv + log2(gate_func.num_witness_columns()) as usize;
// generate index
let params = HyperPlonkParams {
num_constraints,
num_pub_input,
gate_func,
};
let permutation = identity_permutation_mle(merged_nv).evaluations.clone();
let q1 = SelectorColumn(vec![E::Fr::one(), E::Fr::one(), E::Fr::one(), E::Fr::one()]);
let index = HyperPlonkIndex {
params,
permutation,
selectors: vec![q1],
};
// generate pk and vks
let (pk, vk) = <PolyIOP<E::Fr> as HyperPlonkSNARK<E, MultilinearKzgPCS<E>>>::preprocess(
&index, &pcs_srs,
)?;
// w1 := [0, 1, 2, 3]
let w1 = WitnessColumn(vec![
E::Fr::zero(),
E::Fr::one(),
E::Fr::from(2u64),
E::Fr::from(3u64),
]);
// w2 := [0^5, 1^5, 2^5, 3^5]
let w2 = WitnessColumn(vec![
E::Fr::zero(),
E::Fr::one(),
E::Fr::from(32u64),
E::Fr::from(243u64),
]);
// public input = w1
let pi = w1.clone();
// generate a proof and verify
let proof = <PolyIOP<E::Fr> as HyperPlonkSNARK<E, MultilinearKzgPCS<E>>>::prove(
&pk,
&pi.0,
&[w1.clone(), w2.clone()],
)?;
let _verify = <PolyIOP<E::Fr> as HyperPlonkSNARK<E, MultilinearKzgPCS<E>>>::verify(
&vk, &pi.0, &proof,
)?;
// bad path 1: wrong permutation
let rand_perm: Vec<E::Fr> = random_permutation_mle(merged_nv, &mut rng)
.evaluations
.clone();
let mut bad_index = index.clone();
bad_index.permutation = rand_perm;
// generate pk and vks
let (_, bad_vk) = <PolyIOP<E::Fr> as HyperPlonkSNARK<E, MultilinearKzgPCS<E>>>::preprocess(
&bad_index, &pcs_srs,
)?;
assert!(
<PolyIOP<E::Fr> as HyperPlonkSNARK<E, MultilinearKzgPCS<E>>>::verify(
&bad_vk, &pi.0, &proof,
)
.is_err()
);
// bad path 2: wrong witness
let mut w1_bad = w1.clone();
w1_bad.0[0] = E::Fr::one();
assert!(
<PolyIOP<E::Fr> as HyperPlonkSNARK<E, MultilinearKzgPCS<E>>>::prove(
&pk,
&pi.0,
&[w1_bad, w2],
)
.is_err()
);
Ok(())
}
}

+ 96
- 106
hyperplonk/src/structs.rs

@ -1,11 +1,11 @@
//! Main module for the HyperPlonk PolyIOP.
use crate::selectors::SelectorColumn;
use crate::{custom_gate::CustomizedGates, selectors::SelectorColumn};
use ark_ec::PairingEngine;
use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension;
use ark_std::cmp::max;
use jf_primitives::pcs::PolynomialCommitmentScheme;
use ark_std::log2;
use pcs::PolynomialCommitmentScheme;
use poly_iop::prelude::{PermutationCheck, ZeroCheck};
use std::rc::Rc;
@ -22,80 +22,86 @@ where
PCS: PolynomialCommitmentScheme<E>,
{
// =======================================================================
// PCS components: common
// witness related
// =======================================================================
/// PCS commit for witnesses
// PCS commit for witnesses
pub w_merged_com: PCS::Commitment,
// Batch opening for witness commitment
// - PermCheck eval: 1 point
// - ZeroCheck evals: #witness points
// - public input eval: 1 point
pub w_merged_batch_opening: PCS::BatchProof,
// Evaluations of Witness
// - PermCheck eval: 1 point
// - ZeroCheck evals: #witness points
// - public input eval: 1 point
pub w_merged_batch_evals: Vec<E::Fr>,
// =======================================================================
// PCS components: permutation check
// prod(x) related
// =======================================================================
/// prod(x)'s evaluations
/// sequence: prod(0,x), prod(1, x), prod(x, 0), prod(x, 1), prod(1, ..., 1,
/// 0)
pub prod_evals: Vec<E::Fr>,
/// prod(x)'s openings
/// sequence: prod(0,x), prod(1, x), prod(x, 0), prod(x, 1), prod(1, ..., 1,
/// 0)
pub prod_openings: Vec<PCS::Proof>,
/// PCS openings for witness on permutation check point
// TODO: replace me with a batch opening
pub witness_perm_check_opening: PCS::Proof,
/// Evaluates of witnesses on permutation check point
pub witness_perm_check_eval: E::Fr,
/// PCS openings for selectors on permutation check point
// TODO: replace me with a batch opening
pub perm_oracle_opening: PCS::Proof,
/// Evaluates of selectors on permutation check point
pub perm_oracle_eval: E::Fr,
// prod(x)'s openings
// - prod(0, x),
// - prod(1, x),
// - prod(x, 0),
// - prod(x, 1),
// - prod(1, ..., 1,0)
pub prod_batch_openings: PCS::BatchProof,
// prod(x)'s evaluations
// - prod(0, x),
// - prod(1, x),
// - prod(x, 0),
// - prod(x, 1),
// - prod(1, ..., 1,0)
pub prod_batch_evals: Vec<E::Fr>,
// =======================================================================
// PCS components: zero check
// selectors related
// =======================================================================
/// PCS openings for witness on zero check point
// TODO: replace me with a batch opening
pub witness_zero_check_openings: Vec<PCS::Proof>,
/// Evaluates of witnesses on zero check point
pub witness_zero_check_evals: Vec<E::Fr>,
/// PCS openings for selectors on zero check point
// TODO: replace me with a batch opening
pub selector_oracle_openings: Vec<PCS::Proof>,
/// Evaluates of selectors on zero check point
pub selector_oracle_evals: Vec<E::Fr>,
// PCS openings for selectors on zero check point
pub selector_batch_opening: PCS::BatchProof,
// Evaluates of selectors on zero check point
pub selector_batch_evals: Vec<E::Fr>,
// =======================================================================
// PCS components: public inputs
// IOP proofs
// =======================================================================
/// Evaluates of public inputs on r_pi from transcript
pub pi_eval: E::Fr,
/// Opening of public inputs on r_pi from transcript
pub pi_opening: PCS::Proof,
// =======================================================================
// IOP components
// =======================================================================
/// the custom gate zerocheck proof
// the custom gate zerocheck proof
pub zero_check_proof: <PC as ZeroCheck<E::Fr>>::ZeroCheckProof,
/// the permutation check proof for copy constraints
// the permutation check proof for copy constraints
pub perm_check_proof: PC::PermutationProof,
}
/// The HyperPlonk instance parameters, consists of the following:
/// - the number of variables in the poly-IOP
/// - binary log of the number of public input variables
/// - binary log of the number of selectors
/// - binary log of the number of witness wires
/// - the number of constraints
/// - number of public input columns
/// - the customized gate function
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct HyperPlonkParams {
/// the number of variables in polys
pub nv: usize,
/// binary log of the public input length
pub log_pub_input_len: usize,
// binary log of the number of selectors
pub log_n_selectors: usize,
/// binary log of the number of witness wires
pub log_n_wires: usize,
/// the number of constraints
pub num_constraints: usize,
/// number of public input
// public input is only 1 column and is implicitly the first witness column.
// this size must not exceed number of constraints.
pub num_pub_input: usize,
/// customized gate function
pub gate_func: CustomizedGates,
}
impl HyperPlonkParams {
/// Number of variables in a multilinear system
pub fn num_variables(&self) -> usize {
log2(self.num_constraints) as usize
}
/// number of selector columns
pub fn num_selector_columns(&self) -> usize {
self.gate_func.num_selector_columns()
}
/// number of witness columns
pub fn num_witness_columns(&self) -> usize {
self.gate_func.num_witness_columns()
}
}
/// The HyperPlonk index, consists of the following:
/// - HyperPlonk parameters
/// - the wire permutation
@ -107,72 +113,56 @@ pub struct HyperPlonkIndex {
pub selectors: Vec<SelectorColumn<F>>,
}
impl<F: PrimeField> HyperPlonkIndex<F> {
/// Number of variables in a multilinear system
pub fn num_variables(&self) -> usize {
self.params.num_variables()
}
/// number of selector columns
pub fn num_selector_columns(&self) -> usize {
self.params.num_selector_columns()
}
/// number of witness columns
pub fn num_witness_columns(&self) -> usize {
self.params.num_witness_columns()
}
}
/// The HyperPlonk proving key, consists of the following:
/// - the hyperplonk instance parameters
/// - the preprocessed polynomials output by the indexer
/// - the commitment to the selectors
/// - the parameters for polynomial commitment
#[derive(Clone, Debug, Default, PartialEq)]
pub struct HyperPlonkProvingKey<E: PairingEngine, PCS: PolynomialCommitmentScheme<E>> {
/// hyperplonk instance parameters
/// Hyperplonk instance parameters
pub params: HyperPlonkParams,
/// the preprocessed permutation polynomials
/// The preprocessed permutation polynomials
pub permutation_oracle: Rc<DenseMultilinearExtension<E::Fr>>,
/// the preprocessed selector polynomials
// TODO: merge the list into a single MLE
/// The preprocessed selector polynomials
pub selector_oracles: Vec<Rc<DenseMultilinearExtension<E::Fr>>>,
/// the parameters for PCS commitment
/// A commitment to the preprocessed selector polynomials
pub selector_com: PCS::Commitment,
/// The parameters for PCS commitment
pub pcs_param: PCS::ProverParam,
}
/// The HyperPlonk verifying key, consists of the following:
/// - the hyperplonk instance parameters
/// - the preprocessed polynomials output by the indexer
/// - the commitments to the preprocessed polynomials output by the indexer
/// - the parameters for polynomial commitment
#[derive(Clone, Debug, Default, PartialEq)]
pub struct HyperPlonkVerifyingKey<E: PairingEngine, PCS: PolynomialCommitmentScheme<E>> {
/// hyperplonk instance parameters
/// Hyperplonk instance parameters
pub params: HyperPlonkParams,
/// the parameters for PCS commitment
/// The preprocessed permutation polynomials
pub permutation_oracle: Rc<DenseMultilinearExtension<E::Fr>>,
/// The parameters for PCS commitment
pub pcs_param: PCS::VerifierParam,
/// Selector's commitment
// TODO: replace me with a batch commitment
pub selector_com: Vec<PCS::Commitment>,
/// A commitment to the preprocessed selector polynomials
pub selector_com: PCS::Commitment,
/// Permutation oracle's commitment
pub perm_com: PCS::Commitment,
}
/// Customized gate is a list of tuples of
/// (coefficient, selector_index, wire_indices)
///
/// Example:
/// q_L(X) * W_1(X)^5 - W_2(X)
/// is represented as
/// vec![
/// ( 1, Some(id_qL), vec![id_W1, id_W1, id_W1, id_W1, id_W1]),
/// (-1, None, vec![id_W2])
/// ]
///
/// CustomizedGates {
/// gates: vec![
/// (1, Some(0), vec![0, 0, 0, 0, 0]),
/// (-1, None, vec![1])
/// ],
/// };
/// where id_qL = 0 // first selector
/// id_W1 = 0 // first witness
/// id_w2 = 1 // second witness
///
/// NOTE: here coeff is a signed integer, instead of a field element
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct CustomizedGates {
pub(crate) gates: Vec<(i64, Option<usize>, Vec<usize>)>,
}
impl CustomizedGates {
/// The degree of the algebraic customized gate
pub fn degree(&self) -> usize {
let mut res = 0;
for x in self.gates.iter() {
res = max(res, x.2.len() + (x.1.is_some() as usize))
}
res
}
}

+ 94
- 27
hyperplonk/src/utils.rs

@ -1,16 +1,87 @@
use std::rc::Rc;
use crate::{
custom_gate::CustomizedGates, errors::HyperPlonkErrors, structs::HyperPlonkParams,
witness::WitnessColumn,
};
use arithmetic::VirtualPolynomial;
use ark_ec::PairingEngine;
use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension;
use pcs::PolynomialCommitmentScheme;
use std::{borrow::Borrow, rc::Rc};
use crate::{
errors::HyperPlonkErrors,
structs::{CustomizedGates, HyperPlonkParams},
witness::WitnessColumn,
};
/// An accumulator structure that holds a polynomial and
/// its opening points
#[derive(Debug)]
pub(super) struct PcsAccumulator<E: PairingEngine, PCS: PolynomialCommitmentScheme<E>> {
pub(crate) polynomial: Option<PCS::Polynomial>,
pub(crate) poly_commit: Option<PCS::Commitment>,
pub(crate) points: Vec<PCS::Point>,
}
impl<E: PairingEngine, PCS: PolynomialCommitmentScheme<E>> PcsAccumulator<E, PCS> {
/// Create an empty accumulator.
pub(super) fn new() -> Self {
Self {
polynomial: None,
poly_commit: None,
points: vec![],
}
}
/// Initialize the polynomial; requires both the polynomial
/// and its commitment.
pub(super) fn init_poly(
&mut self,
polynomial: PCS::Polynomial,
commitment: PCS::Commitment,
) -> Result<(), HyperPlonkErrors> {
if self.polynomial.is_some() || self.poly_commit.is_some() {
return Err(HyperPlonkErrors::InvalidProver(
"poly already set for accumulator".to_string(),
));
}
self.polynomial = Some(polynomial);
self.poly_commit = Some(commitment);
Ok(())
}
/// Push a new evaluation point into the accumulator
pub(super) fn insert_point(&mut self, point: &PCS::Point) {
self.points.push(point.clone())
}
/// Batch open all the points over a merged polynomial.
/// A simple wrapper of PCS::multi_open
pub(super) fn batch_open(
&self,
prover_param: impl Borrow<PCS::ProverParam>,
) -> Result<(PCS::BatchProof, Vec<PCS::Evaluation>), HyperPlonkErrors> {
let poly = match &self.polynomial {
Some(p) => p,
None => {
return Err(HyperPlonkErrors::InvalidProver(
"poly is set for accumulator".to_string(),
))
},
};
use poly_iop::prelude::bit_decompose;
let commitment = match &self.poly_commit {
Some(p) => p,
None => {
return Err(HyperPlonkErrors::InvalidProver(
"poly is set for accumulator".to_string(),
))
},
};
Ok(PCS::multi_open_single_poly(
prover_param.borrow(),
commitment,
poly,
&self.points,
)?)
}
}
/// Build MLE from matrix of witnesses.
///
@ -42,30 +113,37 @@ macro_rules! build_mle {
}
/// Sanity-check for HyperPlonk SNARK proving
pub(crate) fn prove_sanity_check<F: PrimeField>(
pub(crate) fn prover_sanity_check<F: PrimeField>(
params: &HyperPlonkParams,
pub_input: &[F],
witnesses: &[WitnessColumn<F>],
) -> Result<(), HyperPlonkErrors> {
let num_vars = params.nv;
let ell = params.log_pub_input_len;
// public input length must be no greater than num_constraints
if pub_input.len() > params.num_constraints {
return Err(HyperPlonkErrors::InvalidProver(format!(
"Public input length {} is greater than num constraits {}",
pub_input.len(),
params.num_pub_input
)));
}
// public input length
if pub_input.len() != 1 << ell {
if pub_input.len() != params.num_pub_input {
return Err(HyperPlonkErrors::InvalidProver(format!(
"Public input length is not correct: got {}, expect {}",
pub_input.len(),
1 << ell
params.num_pub_input
)));
}
// witnesses length
for (i, w) in witnesses.iter().enumerate() {
if w.0.len() != 1 << num_vars {
if w.0.len() != params.num_constraints {
return Err(HyperPlonkErrors::InvalidProver(format!(
"{}-th witness length is not correct: got {}, expect {}",
i,
pub_input.len(),
1 << ell
w.0.len(),
params.num_constraints
)));
}
}
@ -161,17 +239,6 @@ pub(crate) fn eval_f(
Ok(res)
}
/// given the evaluation input `point` of the `index`-th polynomial,
/// obtain the evaluation point in the merged polynomial
pub(crate) fn gen_eval_point<F: PrimeField>(index: usize, index_len: usize, point: &[F]) -> Vec<F> {
let mut index_vec: Vec<F> = bit_decompose(index as u64, index_len)
.into_iter()
.map(|x| F::from(x))
.collect();
index_vec.reverse();
[point, &index_vec].concat()
}
#[cfg(test)]
mod test {
use super::*;

+ 10
- 1
hyperplonk/src/witness.rs

@ -9,7 +9,7 @@ use std::rc::Rc;
pub struct WitnessRow<F: PrimeField>(pub(crate) Vec<F>);
/// A column of witnesses of length `#constraints`
#[derive(Debug, Clone)]
#[derive(Debug, Clone, Default)]
pub struct WitnessColumn<F: PrimeField>(pub(crate) Vec<F>);
impl<F: PrimeField> WitnessColumn<F> {
@ -19,6 +19,11 @@ impl WitnessColumn {
log2(self.0.len()) as usize
}
/// Append a new element to the witness column
pub fn append(&mut self, new_element: F) {
self.0.push(new_element)
}
/// Build witness columns from rows
pub fn from_witness_rows(
witness_rows: &[WitnessRow<F>],
@ -42,6 +47,10 @@ impl WitnessColumn {
Ok(res)
}
pub fn coeff_ref(&self) -> &[F] {
self.0.as_ref()
}
}
impl<F: PrimeField> From<&WitnessColumn<F>> for DenseMultilinearExtension<F> {

+ 51
- 0
pcs/Cargo.toml

@ -0,0 +1,51 @@
[package]
name = "pcs"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
ark-std = { version = "^0.3.0", default-features = false }
ark-serialize = { version = "^0.3.0", default-features = false, features = [ "derive" ] }
ark-ff = { version = "^0.3.0", default-features = false }
ark-ec = { version = "^0.3.0", default-features = false }
ark-poly = {version = "^0.3.0", default-features = false }
ark-sponge = {version = "^0.3.0", default-features = false}
ark-bls12-381 = { version = "0.3.0", default-features = false, features = [ "curve" ] }
displaydoc = { version = "0.2.3", default-features = false }
derivative = { version = "2", features = ["use_core"] }
arithmetic = { path = "../arithmetic" }
transcript = { path = "../transcript" }
util = { path = "../util" }
rayon = { version = "1.5.2", default-features = false, optional = true }
itertools = { version = "0.10.4", optional = true }
# Benchmarks
[[bench]]
name = "pcs-benches"
path = "benches/bench.rs"
harness = false
[features]
# default = [ "parallel", "print-trace" ]
default = [ "parallel",]
extensive_sanity_checks = [ ]
parallel = [
"rayon",
"itertools",
"ark-std/parallel",
"ark-ff/parallel",
"ark-poly/parallel",
"ark-ec/parallel",
"util/parallel",
"arithmetic/parallel",
]
print-trace = [
"ark-std/print-trace",
"arithmetic/print-trace",
]

+ 88
- 0
pcs/benches/bench.rs

@ -0,0 +1,88 @@
use ark_bls12_381::{Bls12_381, Fr};
use ark_ff::UniformRand;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{rc::Rc, test_rng};
use pcs::{
prelude::{MultilinearKzgPCS, PCSError, PolynomialCommitmentScheme},
StructuredReferenceString,
};
use std::time::Instant;
fn main() -> Result<(), PCSError> {
bench_pcs()
}
fn bench_pcs() -> Result<(), PCSError> {
let mut rng = test_rng();
// normal polynomials
let uni_params = MultilinearKzgPCS::<Bls12_381>::gen_srs_for_testing(&mut rng, 18)?;
for nv in 4..19 {
let repetition = if nv < 10 {
100
} else if nv < 20 {
50
} else {
10
};
let poly = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
let (ml_ck, ml_vk) = uni_params.0.trim(nv)?;
let (uni_ck, uni_vk) = uni_params.1.trim(nv)?;
let ck = (ml_ck, uni_ck);
let vk = (ml_vk, uni_vk);
let point: Vec<_> = (0..nv).map(|_| Fr::rand(&mut rng)).collect();
// commit
let com = {
let start = Instant::now();
for _ in 0..repetition {
let _commit = MultilinearKzgPCS::commit(&ck, &poly)?;
}
println!(
"KZG commit for {} variables: {} ns",
nv,
start.elapsed().as_nanos() / repetition as u128
);
MultilinearKzgPCS::commit(&ck, &poly)?
};
// open
let (proof, value) = {
let start = Instant::now();
for _ in 0..repetition {
let _open = MultilinearKzgPCS::open(&ck, &poly, &point)?;
}
println!(
"KZG open for {} variables: {} ns",
nv,
start.elapsed().as_nanos() / repetition as u128
);
MultilinearKzgPCS::open(&ck, &poly, &point)?
};
// verify
{
let start = Instant::now();
for _ in 0..repetition {
assert!(MultilinearKzgPCS::verify(
&vk, &com, &point, &value, &proof
)?);
}
println!(
"KZG verify for {} variables: {} ns",
nv,
start.elapsed().as_nanos() / repetition as u128
);
}
println!("====================================");
}
Ok(())
}

+ 7
- 0
pcs/readme.md

@ -0,0 +1,7 @@
KZG based multilinear polynomial commitment
-----
# Compiling features:
- `parallel`: use multi-threading when possible.
- `print-trace`: print out user friendly information about the running time for each micro component.
- `extensive_sanity_checks`: runs additional sanity checks that is not essential and will slow down the scheme.

+ 50
- 0
pcs/src/errors.rs

@ -0,0 +1,50 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Error module.
use arithmetic::ArithErrors;
use ark_serialize::SerializationError;
use ark_std::string::String;
use displaydoc::Display;
use transcript::TranscriptError;
/// A `enum` specifying the possible failure modes of the PCS.
#[derive(Display, Debug)]
pub enum PCSError {
/// Invalid Prover: {0}
InvalidProver(String),
/// Invalid Verifier: {0}
InvalidVerifier(String),
/// Invalid Proof: {0}
InvalidProof(String),
/// Invalid parameters: {0}
InvalidParameters(String),
/// An error during (de)serialization: {0}
SerializationError(SerializationError),
/// Transcript error {0}
TranscriptError(TranscriptError),
/// ArithErrors error {0}
ArithErrors(ArithErrors),
}
impl From<SerializationError> for PCSError {
fn from(e: ark_serialize::SerializationError) -> Self {
Self::SerializationError(e)
}
}
impl From<TranscriptError> for PCSError {
fn from(e: TranscriptError) -> Self {
Self::TranscriptError(e)
}
}
impl From<ArithErrors> for PCSError {
fn from(e: ArithErrors) -> Self {
Self::ArithErrors(e)
}
}

+ 190
- 0
pcs/src/lib.rs

@ -0,0 +1,190 @@
mod errors;
mod multilinear_kzg;
mod structs;
mod univariate_kzg;
pub mod prelude;
use ark_ec::PairingEngine;
use ark_ff::Field;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::rand::{CryptoRng, RngCore};
use errors::PCSError;
use std::{borrow::Borrow, fmt::Debug, hash::Hash};
/// This trait defines APIs for polynomial commitment schemes.
/// Note that for our usage of PCS, we do not require the hiding property.
pub trait PolynomialCommitmentScheme<E: PairingEngine> {
/// Prover parameters
type ProverParam: Clone;
/// Verifier parameters
type VerifierParam: Clone + CanonicalSerialize + CanonicalDeserialize;
/// Structured reference string
type SRS: Clone + Debug;
/// Polynomial and its associated types
type Polynomial: Clone
+ Debug
+ Hash
+ PartialEq
+ Eq
+ CanonicalSerialize
+ CanonicalDeserialize;
/// Polynomial input domain
type Point: Clone + Ord + Debug + Sync + Hash + PartialEq + Eq;
/// Polynomial Evaluation
type Evaluation: Field;
/// Commitments
type Commitment: Clone + CanonicalSerialize + CanonicalDeserialize + Debug + PartialEq + Eq;
/// Batch commitments
type BatchCommitment: Clone + CanonicalSerialize + CanonicalDeserialize + Debug + PartialEq + Eq;
/// Proofs
type Proof: Clone + CanonicalSerialize + CanonicalDeserialize + Debug + PartialEq + Eq;
/// Batch proofs
type BatchProof: Clone + CanonicalSerialize + CanonicalDeserialize + Debug + PartialEq + Eq;
/// Build SRS for testing.
///
/// - For univariate polynomials, `supported_size` is the maximum degree.
/// - For multilinear polynomials, `supported_size` is the number of
/// variables.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore + CryptoRng>(
rng: &mut R,
supported_size: usize,
) -> Result<Self::SRS, PCSError>;
/// Trim the universal parameters to specialize the public parameters.
/// Input both `supported_degree` for univariate and
/// `supported_num_vars` for multilinear.
/// ## Note on function signature
/// Usually, data structure like SRS and ProverParam are huge and users
/// might wish to keep them in heap using different kinds of smart pointers
/// (instead of only in stack) therefore our `impl Borrow<_>` interface
/// allows for passing in any pointer type, e.g.: `trim(srs: &Self::SRS,
/// ..)` or `trim(srs: Box<Self::SRS>, ..)` or `trim(srs: Arc<Self::SRS>,
/// ..)` etc.
fn trim(
srs: impl Borrow<Self::SRS>,
supported_degree: usize,
supported_num_vars: Option<usize>,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSError>;
/// Generate a commitment for a polynomial
/// ## Note on function signature
/// Usually, data structure like SRS and ProverParam are huge and users
/// might wish to keep them in heap using different kinds of smart pointers
/// (instead of only in stack) therefore our `impl Borrow<_>` interface
/// allows for passing in any pointer type, e.g.: `commit(prover_param:
/// &Self::ProverParam, ..)` or `commit(prover_param:
/// Box<Self::ProverParam>, ..)` or `commit(prover_param:
/// Arc<Self::ProverParam>, ..)` etc.
fn commit(
prover_param: impl Borrow<Self::ProverParam>,
poly: &Self::Polynomial,
) -> Result<Self::Commitment, PCSError>;
/// Generate a commitment for a list of polynomials
fn multi_commit(
prover_param: impl Borrow<Self::ProverParam>,
polys: &[Self::Polynomial],
) -> Result<Self::BatchCommitment, PCSError>;
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same.
fn open(
prover_param: impl Borrow<Self::ProverParam>,
polynomial: &Self::Polynomial,
point: &Self::Point,
) -> Result<(Self::Proof, Self::Evaluation), PCSError>;
/// Input a list of multilinear extensions, and a same number of points, and
/// a transcript, compute a multi-opening for all the polynomials.
fn multi_open(
prover_param: impl Borrow<Self::ProverParam>,
multi_commitment: &Self::BatchCommitment,
polynomials: &[Self::Polynomial],
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSError>;
/// Input a multilinear extension, and a number of points, and
/// a transcript, compute a multi-opening for all the polynomials.
fn multi_open_single_poly(
prover_param: impl Borrow<Self::ProverParam>,
commitment: &Self::Commitment,
polynomials: &Self::Polynomial,
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSError>;
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &Self::Point,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSError>;
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
fn batch_verify<R: RngCore + CryptoRng>(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::BatchCommitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
rng: &mut R,
) -> Result<bool, PCSError>;
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly` committed inside `comm`.
fn batch_verify_single_poly(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
) -> Result<bool, PCSError>;
}
/// API definitions for structured reference string
pub trait StructuredReferenceString<E: PairingEngine>: Sized {
/// Prover parameters
type ProverParam;
/// Verifier parameters
type VerifierParam;
/// Extract the prover parameters from the public parameters.
fn extract_prover_param(&self, supported_size: usize) -> Self::ProverParam;
/// Extract the verifier parameters from the public parameters.
fn extract_verifier_param(&self, supported_size: usize) -> Self::VerifierParam;
/// Trim the universal parameters to specialize the public parameters
/// for polynomials to the given `supported_size`, and
/// returns committer key and verifier key.
///
/// - For univariate polynomials, `supported_size` is the maximum degree.
/// - For multilinear polynomials, `supported_size` is 2 to the number of
/// variables.
///
/// `supported_log_size` should be in range `1..=params.log_size`
fn trim(
&self,
supported_size: usize,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSError>;
/// Build SRS for testing.
///
/// - For univariate polynomials, `supported_size` is the maximum degree.
/// - For multilinear polynomials, `supported_size` is the number of
/// variables.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore + CryptoRng>(
rng: &mut R,
supported_size: usize,
) -> Result<Self, PCSError>;
}

+ 11
- 0
pcs/src/multilinear_kzg/batching/mod.rs

@ -0,0 +1,11 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
mod multi_poly;
mod single_poly;
pub(crate) use multi_poly::*;
pub(crate) use single_poly::*;

+ 426
- 0
pcs/src/multilinear_kzg/batching/multi_poly.rs

@ -0,0 +1,426 @@
use crate::{
multilinear_kzg::{
open_internal,
srs::{MultilinearProverParam, MultilinearVerifierParam},
util::compute_w_circ_l,
verify_internal, MultilinearKzgBatchProof,
},
prelude::{Commitment, UnivariateProverParam, UnivariateVerifierParam},
univariate_kzg::UnivariateKzgPCS,
PCSError, PolynomialCommitmentScheme,
};
use arithmetic::{build_l, get_uni_domain, merge_polynomials};
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, EvaluationDomain, MultilinearExtension, Polynomial};
use ark_std::{end_timer, format, rc::Rc, start_timer, string::ToString, vec, vec::Vec};
use transcript::IOPTranscript;
/// Input
/// - the prover parameters for univariate KZG,
/// - the prover parameters for multilinear KZG,
/// - a list of MLEs,
/// - a commitment to all MLEs
/// - and a same number of points,
/// compute a multi-opening for all the polynomials.
///
/// For simplicity, this API requires each MLE to have only one point. If
/// the caller wish to use more than one points per MLE, it should be
/// handled at the caller layer, and utilize 'multi_open_same_poly_internal'
/// API.
///
/// Returns an error if the lengths do not match.
///
/// Returns the proof, consists of
/// - the multilinear KZG opening
/// - the univariate KZG commitment to q(x)
/// - the openings and evaluations of q(x) at omega^i and r
///
/// Steps:
/// 1. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 2. build MLE `w` which is the merge of all MLEs.
/// 3. build `q(x)` which is a univariate polynomial `W circ l`
/// 4. commit to q(x) and sample r from transcript
/// transcript contains: w commitment, points, q(x)'s commitment
/// 5. build q(omega^i) and their openings
/// 6. build q(r) and its opening
/// 7. get a point `p := l(r)`
/// 8. output an opening of `w` over point `p`
/// 9. output `w(p)`
pub(crate) fn multi_open_internal<E: PairingEngine>(
uni_prover_param: &UnivariateProverParam<E::G1Affine>,
ml_prover_param: &MultilinearProverParam<E>,
polynomials: &[Rc<DenseMultilinearExtension<E::Fr>>],
multi_commitment: &Commitment<E>,
points: &[Vec<E::Fr>],
) -> Result<(MultilinearKzgBatchProof<E>, Vec<E::Fr>), PCSError> {
let open_timer = start_timer!(|| "multi open");
// ===================================
// Sanity checks on inputs
// ===================================
let points_len = points.len();
if points_len == 0 {
return Err(PCSError::InvalidParameters("points is empty".to_string()));
}
if points_len != polynomials.len() {
return Err(PCSError::InvalidParameters(
"polynomial length does not match point length".to_string(),
));
}
let num_var = polynomials[0].num_vars();
for poly in polynomials.iter().skip(1) {
if poly.num_vars() != num_var {
return Err(PCSError::InvalidParameters(
"polynomials do not have same num_vars".to_string(),
));
}
}
for point in points.iter() {
if point.len() != num_var {
return Err(PCSError::InvalidParameters(
"points do not have same num_vars".to_string(),
));
}
}
let domain = get_uni_domain::<E::Fr>(points_len)?;
// 1. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(points, &domain, true)?;
// 2. build MLE `w` which is the merge of all MLEs.
let merge_poly = merge_polynomials(polynomials)?;
// 3. build `q(x)` which is a univariate polynomial `W circ l`
let q_x = compute_w_circ_l(&merge_poly, &uni_polys, points.len(), true)?;
// 4. commit to q(x) and sample r from transcript
// transcript contains: w commitment, points, q(x)'s commitment
let mut transcript = IOPTranscript::new(b"ml kzg");
transcript.append_serializable_element(b"w", multi_commitment)?;
for point in points {
transcript.append_serializable_element(b"w", point)?;
}
let q_x_commit = UnivariateKzgPCS::<E>::commit(uni_prover_param, &q_x)?;
transcript.append_serializable_element(b"q(x)", &q_x_commit)?;
let r = transcript.get_and_append_challenge(b"r")?;
// 5. build q(omega^i) and their openings
let mut q_x_opens = vec![];
let mut q_x_evals = vec![];
for i in 0..points_len {
let (q_x_open, q_x_eval) =
UnivariateKzgPCS::<E>::open(uni_prover_param, &q_x, &domain.element(i))?;
q_x_opens.push(q_x_open);
q_x_evals.push(q_x_eval);
#[cfg(feature = "extensive_sanity_checks")]
{
// sanity check
let point: Vec<E::Fr> = uni_polys
.iter()
.map(|poly| poly.evaluate(&domain.element(i)))
.collect();
let mle_eval = merge_poly.evaluate(&point).unwrap();
if mle_eval != q_x_eval {
return Err(PCSError::InvalidProver(
"Q(omega) does not match W(l(omega))".to_string(),
));
}
}
}
// 6. build q(r) and its opening
let (q_x_open, q_r_value) = UnivariateKzgPCS::<E>::open(uni_prover_param, &q_x, &r)?;
q_x_opens.push(q_x_open);
q_x_evals.push(q_r_value);
// 7. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys.iter().map(|poly| poly.evaluate(&r)).collect();
// 8. output an opening of `w` over point `p`
let (mle_opening, mle_eval) = open_internal(ml_prover_param, &merge_poly, &point)?;
// 9. output value that is `w` evaluated at `p` (which should match `q(r)`)
if mle_eval != q_r_value {
return Err(PCSError::InvalidProver(
"Q(r) does not match W(l(r))".to_string(),
));
}
end_timer!(open_timer);
Ok((
MultilinearKzgBatchProof {
proof: mle_opening,
q_x_commit,
q_x_opens,
},
q_x_evals,
))
}
/// Verifies that the `multi_commitment` is a valid commitment
/// to a list of MLEs for the given openings and evaluations in
/// the batch_proof.
///
/// steps:
///
/// 1. push w, points and q_com into transcript
/// 2. sample `r` from transcript
/// 3. check `q(r) == batch_proof.q_x_value.last` and
/// `q(omega^i) == batch_proof.q_x_value[i]`
/// 4. build `l(points)` which is a list of univariate
/// polynomials that goes through the points
/// 5. get a point `p := l(r)`
/// 6. verifies `p` is valid against multilinear KZG proof
pub(crate) fn batch_verify_internal<E: PairingEngine>(
uni_verifier_param: &UnivariateVerifierParam<E>,
ml_verifier_param: &MultilinearVerifierParam<E>,
multi_commitment: &Commitment<E>,
points: &[Vec<E::Fr>],
values: &[E::Fr],
batch_proof: &MultilinearKzgBatchProof<E>,
) -> Result<bool, PCSError> {
let verify_timer = start_timer!(|| "batch verify");
// ===================================
// Sanity checks on inputs
// ===================================
let points_len = points.len();
if points_len == 0 {
return Err(PCSError::InvalidParameters("points is empty".to_string()));
}
// add one here because we also have q(r) and its opening
if points_len + 1 != batch_proof.q_x_opens.len() {
return Err(PCSError::InvalidParameters(format!(
"openings length {} does not match point length {}",
points_len + 1,
batch_proof.q_x_opens.len()
)));
}
if points_len + 1 != values.len() {
return Err(PCSError::InvalidParameters(format!(
"values length {} does not match point length {}",
points_len + 1,
values.len()
)));
}
let num_var = points[0].len();
for point in points.iter().skip(1) {
if point.len() != num_var {
return Err(PCSError::InvalidParameters(format!(
"points do not have same num_vars ({} vs {})",
point.len(),
num_var,
)));
}
}
let domain = get_uni_domain::<E::Fr>(points_len)?;
// 1. push w, points and q_com into transcript
let mut transcript = IOPTranscript::new(b"ml kzg");
transcript.append_serializable_element(b"w", multi_commitment)?;
for point in points {
transcript.append_serializable_element(b"w", point)?;
}
transcript.append_serializable_element(b"q(x)", &batch_proof.q_x_commit)?;
// 2. sample `r` from transcript
let r = transcript.get_and_append_challenge(b"r")?;
// 3. check `q(r) == batch_proof.q_x_value.last` and `q(omega^i) =
// batch_proof.q_x_value[i]`
for (i, value) in values.iter().enumerate().take(points_len) {
if !UnivariateKzgPCS::verify(
uni_verifier_param,
&batch_proof.q_x_commit,
&domain.element(i),
value,
&batch_proof.q_x_opens[i],
)? {
#[cfg(debug_assertion)]
println!("q(omega^{}) verification failed", i);
return Ok(false);
}
}
if !UnivariateKzgPCS::verify(
uni_verifier_param,
&batch_proof.q_x_commit,
&r,
&values[points_len],
&batch_proof.q_x_opens[points_len],
)? {
#[cfg(debug_assertion)]
println!("q(r) verification failed");
return Ok(false);
}
// 4. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(points, &domain, true)?;
// 5. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys.iter().map(|x| x.evaluate(&r)).collect();
// 6. verifies `p` is valid against multilinear KZG proof
let res = verify_internal(
ml_verifier_param,
multi_commitment,
&point,
&values[points_len],
&batch_proof.proof,
)?;
#[cfg(debug_assertion)]
if !res {
println!("multilinear KZG verification failed");
}
end_timer!(verify_timer);
Ok(res)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
multilinear_kzg::{
srs::MultilinearUniversalParams,
util::{compute_qx_degree, generate_evaluations_multi_poly},
MultilinearKzgPCS, MultilinearKzgProof,
},
prelude::UnivariateUniversalParams,
StructuredReferenceString,
};
use arithmetic::get_batched_nv;
use ark_bls12_381::Bls12_381 as E;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{
log2,
rand::{CryptoRng, RngCore},
test_rng,
vec::Vec,
UniformRand,
};
type Fr = <E as PairingEngine>::Fr;
fn test_multi_open_helper<R: RngCore + CryptoRng>(
uni_params: &UnivariateUniversalParams<E>,
ml_params: &MultilinearUniversalParams<E>,
polys: &[Rc<DenseMultilinearExtension<Fr>>],
rng: &mut R,
) -> Result<(), PCSError> {
let merged_nv = get_batched_nv(polys[0].num_vars(), polys.len());
let qx_degree = compute_qx_degree(merged_nv, polys.len());
let padded_qx_degree = 1usize << log2(qx_degree);
let (uni_ck, uni_vk) = uni_params.trim(padded_qx_degree)?;
let (ml_ck, ml_vk) = ml_params.trim(merged_nv)?;
let mut points = Vec::new();
for poly in polys.iter() {
let point = (0..poly.num_vars())
.map(|_| Fr::rand(rng))
.collect::<Vec<Fr>>();
points.push(point);
}
let evals = generate_evaluations_multi_poly(polys, &points)?;
let com = MultilinearKzgPCS::multi_commit(&(ml_ck.clone(), uni_ck.clone()), polys)?;
let (batch_proof, evaluations) =
multi_open_internal(&uni_ck, &ml_ck, polys, &com, &points)?;
for (a, b) in evals.iter().zip(evaluations.iter()) {
assert_eq!(a, b)
}
// good path
assert!(batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&evaluations,
&batch_proof,
)?);
// bad commitment
assert!(!batch_verify_internal(
&uni_vk,
&ml_vk,
&Commitment(<E as PairingEngine>::G1Affine::default()),
&points,
&evaluations,
&batch_proof,
)?);
// bad points
assert!(
batch_verify_internal(&uni_vk, &ml_vk, &com, &points[1..], &[], &batch_proof,).is_err()
);
// bad proof
assert!(batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&evaluations,
&MultilinearKzgBatchProof {
proof: MultilinearKzgProof { proofs: Vec::new() },
q_x_commit: Commitment(<E as PairingEngine>::G1Affine::default()),
q_x_opens: vec![],
},
)
.is_err());
// bad value
let mut wrong_evals = evaluations.clone();
wrong_evals[0] = Fr::default();
assert!(!batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&wrong_evals,
&batch_proof
)?);
// bad q(x) commit
let mut wrong_proof = batch_proof;
wrong_proof.q_x_commit = Commitment(<E as PairingEngine>::G1Affine::default());
assert!(!batch_verify_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&evaluations,
&wrong_proof,
)?);
Ok(())
}
#[test]
fn test_multi_open_internal() -> Result<(), PCSError> {
let mut rng = test_rng();
let uni_params =
UnivariateUniversalParams::<E>::gen_srs_for_testing(&mut rng, 1usize << 15)?;
let ml_params = MultilinearUniversalParams::<E>::gen_srs_for_testing(&mut rng, 15)?;
for num_poly in 1..10 {
for nv in 1..5 {
let polys1: Vec<_> = (0..num_poly)
.map(|_| Rc::new(DenseMultilinearExtension::rand(nv, &mut rng)))
.collect();
test_multi_open_helper(&uni_params, &ml_params, &polys1, &mut rng)?;
}
}
Ok(())
}
}

+ 368
- 0
pcs/src/multilinear_kzg/batching/single_poly.rs

@ -0,0 +1,368 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
use crate::{
multilinear_kzg::{
open_internal,
srs::{MultilinearProverParam, MultilinearVerifierParam},
util::compute_w_circ_l,
verify_internal, MultilinearKzgBatchProof,
},
prelude::{Commitment, UnivariateProverParam, UnivariateVerifierParam},
univariate_kzg::UnivariateKzgPCS,
PCSError, PolynomialCommitmentScheme,
};
use arithmetic::{build_l, get_uni_domain};
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, EvaluationDomain, MultilinearExtension, Polynomial};
use ark_std::{end_timer, format, rc::Rc, start_timer, string::ToString, vec, vec::Vec};
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
use transcript::IOPTranscript;
/// Input
/// - the prover parameters for univariate KZG,
/// - the prover parameters for multilinear KZG,
/// - a single MLE,
/// - a commitment to the MLE
/// - and a list of points,
/// compute a multi-opening for this polynomial.
///
/// For simplicity, this API requires each MLE to have only one point. If
/// the caller wish to use more than one points per MLE, it should be
/// handled at the caller layer.
///
///
/// Returns the proof, consists of
/// - the multilinear KZG opening
/// - the univariate KZG commitment to q(x)
/// - the openings and evaluations of q(x) at omega^i and r
///
/// Steps:
/// 1. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 3. build `q(x)` which is a univariate polynomial `W circ l`
/// 4. commit to q(x) and sample r from transcript
/// transcript contains: w commitment, points, q(x)'s commitment
/// 5. build q(omega^i) and their openings
/// 6. build q(r) and its opening
/// 7. get a point `p := l(r)`
/// 8. output an opening of `w` over point `p`
/// 9. output `w(p)`
pub(crate) fn multi_open_same_poly_internal<E: PairingEngine>(
uni_prover_param: &UnivariateProverParam<E::G1Affine>,
ml_prover_param: &MultilinearProverParam<E>,
polynomial: &Rc<DenseMultilinearExtension<E::Fr>>,
commitment: &Commitment<E>,
points: &[Vec<E::Fr>],
) -> Result<(MultilinearKzgBatchProof<E>, Vec<E::Fr>), PCSError> {
let open_timer = start_timer!(|| "multi open");
// ===================================
// Sanity checks on inputs
// ===================================
let points_len = points.len();
if points_len == 0 {
return Err(PCSError::InvalidParameters("points is empty".to_string()));
}
let num_var = polynomial.num_vars();
for point in points.iter() {
if point.len() != num_var {
return Err(PCSError::InvalidParameters(
"points do not have same num_vars".to_string(),
));
}
}
let domain = get_uni_domain::<E::Fr>(points_len)?;
// 1. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(points, &domain, false)?;
// 3. build `q(x)` which is a univariate polynomial `W circ l`
let q_x = compute_w_circ_l(polynomial, &uni_polys, points.len(), false)?;
// 4. commit to q(x) and sample r from transcript
// transcript contains: w commitment, points, q(x)'s commitment
let mut transcript = IOPTranscript::new(b"ml kzg");
transcript.append_serializable_element(b"w", commitment)?;
for point in points {
transcript.append_serializable_element(b"w", point)?;
}
let q_x_commit = UnivariateKzgPCS::<E>::commit(uni_prover_param, &q_x)?;
transcript.append_serializable_element(b"q(x)", &q_x_commit)?;
let r = transcript.get_and_append_challenge(b"r")?;
// 5. build q(omega^i) and their openings
let mut q_x_opens = vec![];
let mut q_x_evals = vec![];
for i in 0..points_len {
let (q_x_open, q_x_eval) =
UnivariateKzgPCS::<E>::open(uni_prover_param, &q_x, &domain.element(i))?;
q_x_opens.push(q_x_open);
q_x_evals.push(q_x_eval);
#[cfg(feature = "extensive_sanity_checks")]
{
// sanity check
let point: Vec<E::Fr> = uni_polys
.iter()
.map(|poly| poly.evaluate(&domain.element(i)))
.collect();
let mle_eval = polynomial.evaluate(&point).unwrap();
if mle_eval != q_x_eval {
return Err(PCSError::InvalidProver(
"Q(omega) does not match W(l(omega))".to_string(),
));
}
}
}
// 6. build q(r) and its opening
let (q_x_open, q_r_value) = UnivariateKzgPCS::<E>::open(uni_prover_param, &q_x, &r)?;
q_x_opens.push(q_x_open);
q_x_evals.push(q_r_value);
// 7. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys
.into_par_iter()
.map(|poly| poly.evaluate(&r))
.collect();
// 8. output an opening of `w` over point `p`
let (mle_opening, mle_eval) = open_internal(ml_prover_param, polynomial, &point)?;
// 9. output value that is `w` evaluated at `p` (which should match `q(r)`)
if mle_eval != q_r_value {
return Err(PCSError::InvalidProver(
"Q(r) does not match W(l(r))".to_string(),
));
}
end_timer!(open_timer);
Ok((
MultilinearKzgBatchProof {
proof: mle_opening,
q_x_commit,
q_x_opens,
},
q_x_evals,
))
}
/// Verifies that the `multi_commitment` is a valid commitment
/// to a list of MLEs for the given openings and evaluations in
/// the batch_proof.
///
/// steps:
///
/// 1. push w, points and q_com into transcript
/// 2. sample `r` from transcript
/// 3. check `q(r) == batch_proof.q_x_value.last` and
/// `q(omega^i) == batch_proof.q_x_value[i]`
/// 4. build `l(points)` which is a list of univariate
/// polynomials that goes through the points
/// 5. get a point `p := l(r)`
/// 6. verifies `p` is valid against multilinear KZG proof
#[allow(dead_code)]
pub(crate) fn batch_verify_same_poly_internal<E: PairingEngine>(
uni_verifier_param: &UnivariateVerifierParam<E>,
ml_verifier_param: &MultilinearVerifierParam<E>,
multi_commitment: &Commitment<E>,
points: &[Vec<E::Fr>],
values: &[E::Fr],
batch_proof: &MultilinearKzgBatchProof<E>,
) -> Result<bool, PCSError> {
let verify_timer = start_timer!(|| "batch verify");
// ===================================
// Sanity checks on inputs
// ===================================
let points_len = points.len();
if points_len == 0 {
return Err(PCSError::InvalidParameters("points is empty".to_string()));
}
// add one here because we also have q(r) and its opening
if points_len + 1 != batch_proof.q_x_opens.len() {
return Err(PCSError::InvalidParameters(format!(
"openings length {} does not match point length {}",
points_len + 1,
batch_proof.q_x_opens.len()
)));
}
if points_len + 1 != values.len() {
return Err(PCSError::InvalidParameters(format!(
"values length {} does not match point length {}",
points_len + 1,
values.len()
)));
}
let num_var = points[0].len();
for point in points.iter().skip(1) {
if point.len() != num_var {
return Err(PCSError::InvalidParameters(format!(
"points do not have same num_vars ({} vs {})",
point.len(),
num_var,
)));
}
}
let domain = get_uni_domain::<E::Fr>(points_len)?;
// 1. push w, points and q_com into transcript
let mut transcript = IOPTranscript::new(b"ml kzg");
transcript.append_serializable_element(b"w", multi_commitment)?;
for point in points {
transcript.append_serializable_element(b"w", point)?;
}
transcript.append_serializable_element(b"q(x)", &batch_proof.q_x_commit)?;
// 2. sample `r` from transcript
let r = transcript.get_and_append_challenge(b"r")?;
// 3. check `q(r) == batch_proof.q_x_value.last` and `q(omega^i) =
// batch_proof.q_x_value[i]`
for (i, value) in values.iter().enumerate().take(points_len) {
if !UnivariateKzgPCS::verify(
uni_verifier_param,
&batch_proof.q_x_commit,
&domain.element(i),
value,
&batch_proof.q_x_opens[i],
)? {
#[cfg(debug_assertion)]
println!("q(omega^{}) verification failed", i);
return Ok(false);
}
}
if !UnivariateKzgPCS::verify(
uni_verifier_param,
&batch_proof.q_x_commit,
&r,
&values[points_len],
&batch_proof.q_x_opens[points_len],
)? {
#[cfg(debug_assertion)]
println!("q(r) verification failed");
return Ok(false);
}
// 4. build `l(points)` which is a list of univariate polynomials that goes
// through the points
let uni_polys = build_l(points, &domain, false)?;
// 5. get a point `p := l(r)`
let point: Vec<E::Fr> = uni_polys.iter().map(|x| x.evaluate(&r)).collect();
// 6. verifies `p` is valid against multilinear KZG proof
let res = verify_internal(
ml_verifier_param,
multi_commitment,
&point,
&values[points_len],
&batch_proof.proof,
)?;
#[cfg(debug_assertion)]
if !res {
println!("multilinear KZG verification failed");
}
end_timer!(verify_timer);
Ok(res)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
multilinear_kzg::{
srs::MultilinearUniversalParams,
util::{compute_qx_degree, generate_evaluations_single_poly},
MultilinearKzgPCS,
},
prelude::UnivariateUniversalParams,
StructuredReferenceString,
};
use ark_bls12_381::Bls12_381 as E;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{
log2,
rand::{CryptoRng, RngCore},
test_rng,
vec::Vec,
UniformRand,
};
type Fr = <E as PairingEngine>::Fr;
fn test_same_poly_multi_open_internal_helper<R: RngCore + CryptoRng>(
uni_params: &UnivariateUniversalParams<E>,
ml_params: &MultilinearUniversalParams<E>,
poly: &Rc<DenseMultilinearExtension<Fr>>,
point_len: usize,
rng: &mut R,
) -> Result<(), PCSError> {
let nv = poly.num_vars;
let qx_degree = compute_qx_degree(nv, point_len);
let padded_qx_degree = 1usize << log2(qx_degree);
let (uni_ck, uni_vk) = uni_params.trim(padded_qx_degree)?;
let (ml_ck, ml_vk) = ml_params.trim(nv)?;
let mut points = Vec::new();
let mut eval = Vec::new();
for _ in 0..point_len {
let point = (0..nv).map(|_| Fr::rand(rng)).collect::<Vec<Fr>>();
eval.push(poly.evaluate(&point).unwrap());
points.push(point);
}
let evals = generate_evaluations_single_poly(poly, &points)?;
let com = MultilinearKzgPCS::commit(&(ml_ck.clone(), uni_ck.clone()), poly)?;
let (batch_proof, evaluations) =
multi_open_same_poly_internal(&uni_ck, &ml_ck, poly, &com, &points)?;
for (a, b) in evals.iter().zip(evaluations.iter()) {
assert_eq!(a, b)
}
// good path
assert!(batch_verify_same_poly_internal(
&uni_vk,
&ml_vk,
&com,
&points,
&evaluations,
&batch_proof,
)?);
Ok(())
}
#[test]
fn test_same_poly_multi_open_internal() -> Result<(), PCSError> {
let mut rng = test_rng();
let uni_params =
UnivariateUniversalParams::<E>::gen_srs_for_testing(&mut rng, 1usize << 15)?;
let ml_params = MultilinearUniversalParams::<E>::gen_srs_for_testing(&mut rng, 15)?;
for nv in 1..10 {
for point_len in 1..10 {
// normal polynomials
let polys1 = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
test_same_poly_multi_open_internal_helper(
&uni_params,
&ml_params,
&polys1,
point_len,
&mut rng,
)?;
}
}
Ok(())
}
}

+ 644
- 0
pcs/src/multilinear_kzg/mod.rs

@ -0,0 +1,644 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Main module for multilinear KZG commitment scheme
mod batching;
pub(crate) mod srs;
pub(crate) mod util;
use self::batching::{
batch_verify_internal, batch_verify_same_poly_internal, multi_open_internal,
multi_open_same_poly_internal,
};
use crate::{
prelude::{
Commitment, UnivariateProverParam, UnivariateUniversalParams, UnivariateVerifierParam,
},
univariate_kzg::UnivariateKzgProof,
PCSError, PolynomialCommitmentScheme, StructuredReferenceString,
};
use arithmetic::{evaluate_opt, merge_polynomials};
use ark_ec::{
msm::{FixedBaseMSM, VariableBaseMSM},
AffineCurve, PairingEngine, ProjectiveCurve,
};
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{
borrow::Borrow,
end_timer, format,
marker::PhantomData,
rand::{CryptoRng, RngCore},
rc::Rc,
start_timer,
string::ToString,
vec,
vec::Vec,
One, Zero,
};
// use batching::{batch_verify_internal, multi_open_internal};
use srs::{MultilinearProverParam, MultilinearUniversalParams, MultilinearVerifierParam};
/// KZG Polynomial Commitment Scheme on multilinear polynomials.
pub struct MultilinearKzgPCS<E: PairingEngine> {
#[doc(hidden)]
phantom: PhantomData<E>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, PartialEq, Eq)]
/// proof of opening
pub struct MultilinearKzgProof<E: PairingEngine> {
/// Evaluation of quotients
pub proofs: Vec<E::G1Affine>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, PartialEq, Eq)]
/// proof of batch opening
pub struct MultilinearKzgBatchProof<E: PairingEngine> {
/// The actual proof
pub proof: MultilinearKzgProof<E>,
/// Commitment to q(x):= w(l(x)) where
/// - `w` is the merged MLE
/// - `l` is the list of univariate polys that goes through all points
pub q_x_commit: Commitment<E>,
/// openings of q(x) at 1, omega, ..., and r
pub q_x_opens: Vec<UnivariateKzgProof<E>>,
}
impl<E: PairingEngine> PolynomialCommitmentScheme<E> for MultilinearKzgPCS<E> {
// Parameters
type ProverParam = (
MultilinearProverParam<E>,
UnivariateProverParam<E::G1Affine>,
);
type VerifierParam = (MultilinearVerifierParam<E>, UnivariateVerifierParam<E>);
type SRS = (MultilinearUniversalParams<E>, UnivariateUniversalParams<E>);
// Polynomial and its associated types
type Polynomial = Rc<DenseMultilinearExtension<E::Fr>>;
type Point = Vec<E::Fr>;
type Evaluation = E::Fr;
// Commitments and proofs
type Commitment = Commitment<E>;
type BatchCommitment = Commitment<E>;
type Proof = MultilinearKzgProof<E>;
type BatchProof = MultilinearKzgBatchProof<E>;
/// Build SRS for testing.
///
/// - For univariate polynomials, `log_size` is the log of maximum degree.
/// - For multilinear polynomials, `log_size` is the number of variables.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore + CryptoRng>(
rng: &mut R,
log_size: usize,
) -> Result<Self::SRS, PCSError> {
Ok((
MultilinearUniversalParams::<E>::gen_srs_for_testing(rng, log_size)?,
UnivariateUniversalParams::<E>::gen_srs_for_testing(rng, 1 << log_size)?,
))
}
/// Trim the universal parameters to specialize the public parameters.
/// Input both `supported_log_degree` for univariate and
/// `supported_num_vars` for multilinear.
fn trim(
srs: impl Borrow<Self::SRS>,
supported_degree: usize,
supported_num_vars: Option<usize>,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSError> {
let supported_num_vars = match supported_num_vars {
Some(p) => p,
None => {
return Err(PCSError::InvalidParameters(
"multilinear should receive a num_var param".to_string(),
))
},
};
let (uni_ck, uni_vk) = srs.borrow().1.trim(supported_degree)?;
let (ml_ck, ml_vk) = srs.borrow().0.trim(supported_num_vars)?;
Ok(((ml_ck, uni_ck), (ml_vk, uni_vk)))
}
/// Generate a commitment for a polynomial.
///
/// This function takes `2^num_vars` number of scalar multiplications over
/// G1.
fn commit(
prover_param: impl Borrow<Self::ProverParam>,
poly: &Self::Polynomial,
) -> Result<Self::Commitment, PCSError> {
let prover_param = prover_param.borrow();
let commit_timer = start_timer!(|| "commit");
if prover_param.0.num_vars < poly.num_vars {
return Err(PCSError::InvalidParameters(format!(
"MlE length ({}) exceeds param limit ({})",
poly.num_vars, prover_param.0.num_vars
)));
}
let ignored = prover_param.0.num_vars - poly.num_vars;
let scalars: Vec<_> = poly
.to_evaluations()
.into_iter()
.map(|x| x.into_repr())
.collect();
let commitment = VariableBaseMSM::multi_scalar_mul(
&prover_param.0.powers_of_g[ignored].evals,
scalars.as_slice(),
)
.into_affine();
end_timer!(commit_timer);
Ok(Commitment(commitment))
}
/// Generate a commitment for a list of polynomials.
///
/// This function takes `2^(num_vars + log(polys.len())` number of scalar
/// multiplications over G1.
fn multi_commit(
prover_param: impl Borrow<Self::ProverParam>,
polys: &[Self::Polynomial],
) -> Result<Self::Commitment, PCSError> {
let prover_param = prover_param.borrow();
let commit_timer = start_timer!(|| "multi commit");
let poly = merge_polynomials(polys)?;
let scalars: Vec<_> = poly
.to_evaluations()
.iter()
.map(|x| x.into_repr())
.collect();
let commitment = VariableBaseMSM::multi_scalar_mul(
&prover_param.0.powers_of_g[0].evals,
scalars.as_slice(),
)
.into_affine();
end_timer!(commit_timer);
Ok(Commitment(commitment))
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same. This function does not need to take the evaluation value as an
/// input.
///
/// This function takes 2^{num_var +1} number of scalar multiplications over
/// G1:
/// - it prodceeds with `num_var` number of rounds,
/// - at round i, we compute an MSM for `2^{num_var - i + 1}` number of G2
/// elements.
fn open(
prover_param: impl Borrow<Self::ProverParam>,
polynomial: &Self::Polynomial,
point: &Self::Point,
) -> Result<(Self::Proof, Self::Evaluation), PCSError> {
open_internal(&prover_param.borrow().0, polynomial, point)
}
/// Input
/// - the prover parameters for univariate KZG,
/// - the prover parameters for multilinear KZG,
/// - a list of multilinear extensions (MLEs),
/// - a commitment to all multilinear extensions,
/// - and a same number of points,
/// compute a multi-opening for all the polynomials.
///
/// For simplicity, this API requires each MLE to have only one point. If
/// the caller wish to use more than one points per MLE, it should be
/// handled at the caller layer.
///
/// Returns an error if the lengths do not match.
///
/// Returns the proof, consists of
/// - the multilinear KZG opening
/// - the univariate KZG commitment to q(x)
/// - the openings and evaluations of q(x) at omega^i and r
///
/// Steps:
/// 1. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 2. build MLE `w` which is the merge of all MLEs.
/// 3. build `q(x)` which is a univariate polynomial `W circ l`
/// 4. commit to q(x) and sample r from transcript
/// transcript contains: w commitment, points, q(x)'s commitment
/// 5. build q(omega^i) and their openings
/// 6. build q(r) and its opening
/// 7. get a point `p := l(r)`
/// 8. output an opening of `w` over point `p`
/// 9. output `w(p)`
fn multi_open(
prover_param: impl Borrow<Self::ProverParam>,
multi_commitment: &Self::BatchCommitment,
polynomials: &[Self::Polynomial],
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSError> {
multi_open_internal::<E>(
&prover_param.borrow().1,
&prover_param.borrow().0,
polynomials,
multi_commitment,
points,
)
}
/// Input a multilinear extension, and a number of points, and
/// a transcript, compute a multi-opening for all the polynomials.
fn multi_open_single_poly(
prover_param: impl Borrow<Self::ProverParam>,
commitment: &Self::Commitment,
polynomial: &Self::Polynomial,
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSError> {
multi_open_same_poly_internal::<E>(
&prover_param.borrow().1,
&prover_param.borrow().0,
polynomial,
commitment,
points,
)
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
///
/// This function takes
/// - num_var number of pairing product.
/// - num_var number of MSM
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &Self::Point,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSError> {
verify_internal(&verifier_param.0, commitment, point, value, proof)
}
/// Verifies that `value` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
/// steps:
///
/// 1. put `q(x)`'s evaluations over `(1, omega,...)` into transcript
/// 2. sample `r` from transcript
/// 3. check `q(r) == value`
/// 4. build `l(points)` which is a list of univariate polynomials that goes
/// through the points
/// 5. get a point `p := l(r)`
/// 6. verifies `p` is verifies against proof
fn batch_verify<R: RngCore + CryptoRng>(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::BatchCommitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
_rng: &mut R,
) -> Result<bool, PCSError> {
batch_verify_internal(
&verifier_param.1,
&verifier_param.0,
multi_commitment,
points,
values,
batch_proof,
)
}
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly` committed inside `comm`.
fn batch_verify_single_poly(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
) -> Result<bool, PCSError> {
batch_verify_same_poly_internal(
&verifier_param.1,
&verifier_param.0,
commitment,
points,
values,
batch_proof,
)
}
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same. This function does not need to take the evaluation value as an
/// input.
///
/// This function takes 2^{num_var +1} number of scalar multiplications over
/// G1:
/// - it proceeds with `num_var` number of rounds,
/// - at round i, we compute an MSM for `2^{num_var - i + 1}` number of G2
/// elements.
fn open_internal<E: PairingEngine>(
prover_param: &MultilinearProverParam<E>,
polynomial: &DenseMultilinearExtension<E::Fr>,
point: &[E::Fr],
) -> Result<(MultilinearKzgProof<E>, E::Fr), PCSError> {
let open_timer = start_timer!(|| format!("open mle with {} variable", polynomial.num_vars));
if polynomial.num_vars() > prover_param.num_vars {
return Err(PCSError::InvalidParameters(format!(
"Polynomial num_vars {} exceed the limit {}",
polynomial.num_vars, prover_param.num_vars
)));
}
if polynomial.num_vars() != point.len() {
return Err(PCSError::InvalidParameters(format!(
"Polynomial num_vars {} does not match point len {}",
polynomial.num_vars,
point.len()
)));
}
let nv = polynomial.num_vars();
let ignored = prover_param.num_vars - nv;
let mut r: Vec<Vec<E::Fr>> = (0..nv + 1).map(|_| Vec::new()).collect();
let mut q: Vec<Vec<E::Fr>> = (0..nv + 1).map(|_| Vec::new()).collect();
r[nv] = polynomial.to_evaluations();
let mut proofs = Vec::new();
for (i, (&point_at_k, gi)) in point
.iter()
.zip(prover_param.powers_of_g[ignored..].iter())
.take(nv)
.enumerate()
{
let ith_round = start_timer!(|| format!("{}-th round", i));
let k = nv - i;
let cur_dim = 1 << (k - 1);
let mut cur_q = vec![E::Fr::zero(); cur_dim];
let mut cur_r = vec![E::Fr::zero(); cur_dim];
let one_minus_point_at_k = E::Fr::one() - point_at_k;
let ith_round_eval = start_timer!(|| format!("{}-th round eval", i));
for b in 0..(1 << (k - 1)) {
// q_b = pre_r [2^b + 1] - pre_r [2^b]
cur_q[b] = r[k][(b << 1) + 1] - r[k][b << 1];
// r_b = pre_r [2^b]*(1-p) + pre_r [2^b + 1] * p
cur_r[b] = r[k][b << 1] * one_minus_point_at_k + (r[k][(b << 1) + 1] * point_at_k);
}
end_timer!(ith_round_eval);
let scalars: Vec<_> = (0..(1 << k)).map(|x| cur_q[x >> 1].into_repr()).collect();
q[k] = cur_q;
r[k - 1] = cur_r;
// this is a MSM over G1 and is likely to be the bottleneck
proofs.push(VariableBaseMSM::multi_scalar_mul(&gi.evals, &scalars).into_affine());
end_timer!(ith_round);
}
let eval = evaluate_opt(polynomial, point);
end_timer!(open_timer);
Ok((MultilinearKzgProof { proofs }, eval))
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
///
/// This function takes
/// - num_var number of pairing product.
/// - num_var number of MSM
fn verify_internal<E: PairingEngine>(
verifier_param: &MultilinearVerifierParam<E>,
commitment: &Commitment<E>,
point: &[E::Fr],
value: &E::Fr,
proof: &MultilinearKzgProof<E>,
) -> Result<bool, PCSError> {
let verify_timer = start_timer!(|| "verify");
let num_var = point.len();
if num_var > verifier_param.num_vars {
return Err(PCSError::InvalidParameters(format!(
"point length ({}) exceeds param limit ({})",
num_var, verifier_param.num_vars
)));
}
let ignored = verifier_param.num_vars - num_var;
let prepare_inputs_timer = start_timer!(|| "prepare pairing inputs");
let scalar_size = E::Fr::size_in_bits();
let window_size = FixedBaseMSM::get_mul_window_size(num_var);
let h_table = FixedBaseMSM::get_window_table(
scalar_size,
window_size,
verifier_param.h.into_projective(),
);
let h_mul: Vec<E::G2Projective> =
FixedBaseMSM::multi_scalar_mul(scalar_size, window_size, &h_table, point);
let h_vec: Vec<_> = (0..num_var)
.map(|i| verifier_param.h_mask[ignored + i].into_projective() - h_mul[i])
.collect();
let h_vec: Vec<E::G2Affine> = E::G2Projective::batch_normalization_into_affine(&h_vec);
end_timer!(prepare_inputs_timer);
let pairing_product_timer = start_timer!(|| "pairing product");
let mut pairings: Vec<_> = proof
.proofs
.iter()
.map(|&x| E::G1Prepared::from(x))
.zip(h_vec.into_iter().take(num_var).map(E::G2Prepared::from))
.collect();
pairings.push((
E::G1Prepared::from(
(verifier_param.g.mul(*value) - commitment.0.into_projective()).into_affine(),
),
E::G2Prepared::from(verifier_param.h),
));
let res = E::product_of_pairings(pairings.iter()) == E::Fqk::one();
end_timer!(pairing_product_timer);
end_timer!(verify_timer);
Ok(res)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::multilinear_kzg::util::compute_qx_degree;
use arithmetic::get_batched_nv;
use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{log2, rand::RngCore, test_rng, vec::Vec, UniformRand};
type E = Bls12_381;
type Fr = <E as PairingEngine>::Fr;
fn test_single_helper<R: RngCore + CryptoRng>(
params: &(MultilinearUniversalParams<E>, UnivariateUniversalParams<E>),
poly: &Rc<DenseMultilinearExtension<Fr>>,
rng: &mut R,
) -> Result<(), PCSError> {
let nv = poly.num_vars();
assert_ne!(nv, 0);
let uni_degree = 1;
let (ck, vk) = MultilinearKzgPCS::trim(params, uni_degree, Some(nv + 1))?;
let point: Vec<_> = (0..nv).map(|_| Fr::rand(rng)).collect();
let com = MultilinearKzgPCS::commit(&ck, poly)?;
let (proof, value) = MultilinearKzgPCS::open(&ck, poly, &point)?;
assert!(MultilinearKzgPCS::verify(
&vk, &com, &point, &value, &proof
)?);
let value = Fr::rand(rng);
assert!(!MultilinearKzgPCS::verify(
&vk, &com, &point, &value, &proof
)?);
Ok(())
}
#[test]
fn test_single_commit() -> Result<(), PCSError> {
let mut rng = test_rng();
let params = MultilinearKzgPCS::<E>::gen_srs_for_testing(&mut rng, 10)?;
// normal polynomials
let poly1 = Rc::new(DenseMultilinearExtension::rand(8, &mut rng));
test_single_helper(&params, &poly1, &mut rng)?;
// single-variate polynomials
let poly2 = Rc::new(DenseMultilinearExtension::rand(1, &mut rng));
test_single_helper(&params, &poly2, &mut rng)?;
Ok(())
}
#[test]
fn setup_commit_verify_constant_polynomial() {
let mut rng = test_rng();
// normal polynomials
assert!(MultilinearKzgPCS::<E>::gen_srs_for_testing(&mut rng, 0).is_err());
}
fn test_multi_open_single_poly_helper<R: RngCore + CryptoRng>(
params: &(MultilinearUniversalParams<E>, UnivariateUniversalParams<E>),
poly: Rc<DenseMultilinearExtension<Fr>>,
num_open: usize,
rng: &mut R,
) -> Result<(), PCSError> {
let nv = poly.num_vars();
assert_ne!(nv, 0);
let uni_degree = 1024;
let (ck, vk) = MultilinearKzgPCS::trim(params, uni_degree, Some(nv + 1))?;
let mut points = vec![];
for _ in 0..num_open {
let point: Vec<_> = (0..nv).map(|_| Fr::rand(rng)).collect();
points.push(point)
}
let com = MultilinearKzgPCS::commit(&ck, &poly)?;
let (proof, mut values) =
MultilinearKzgPCS::multi_open_single_poly(&ck, &com, &poly, &points)?;
for (a, b) in values.iter().zip(points.iter()) {
let p = poly.evaluate(&b).unwrap();
assert_eq!(*a, p);
}
assert!(MultilinearKzgPCS::batch_verify_single_poly(
&vk, &com, &points, &values, &proof
)?);
values[0] = Fr::rand(rng);
assert!(!MultilinearKzgPCS::batch_verify_single_poly(
&vk, &com, &points, &values, &proof
)?);
Ok(())
}
#[test]
fn test_multi_open_single_poly() -> Result<(), PCSError> {
let mut rng = test_rng();
let params = MultilinearKzgPCS::<E>::gen_srs_for_testing(&mut rng, 15)?;
for nv in 1..10 {
for num_open in 2..10 {
let poly1 = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
test_multi_open_single_poly_helper(&params, poly1, num_open, &mut rng)?;
}
}
Ok(())
}
fn test_multi_open_helper<R: RngCore + CryptoRng>(
params: &(MultilinearUniversalParams<E>, UnivariateUniversalParams<E>),
polys: &[Rc<DenseMultilinearExtension<Fr>>],
num_open: usize,
rng: &mut R,
) -> Result<(), PCSError> {
let nv = polys[0].num_vars();
assert_ne!(nv, 0);
let merged_nv = get_batched_nv(nv, polys.len());
let qx_degree = compute_qx_degree(merged_nv, polys.len());
let padded_qx_degree = 1usize << log2(qx_degree);
let (ck, vk) = MultilinearKzgPCS::trim(params, padded_qx_degree, Some(merged_nv))?;
let mut points = vec![];
for _ in 0..num_open {
let point: Vec<_> = (0..nv).map(|_| Fr::rand(rng)).collect();
points.push(point)
}
let com = MultilinearKzgPCS::multi_commit(&ck, &polys)?;
let (proof, mut values) = MultilinearKzgPCS::multi_open(&ck, &com, polys, &points)?;
assert!(MultilinearKzgPCS::batch_verify(
&vk, &com, &points, &values, &proof, rng
)?);
values[0] = Fr::rand(rng);
assert!(!MultilinearKzgPCS::batch_verify_single_poly(
&vk, &com, &points, &values, &proof
)?);
Ok(())
}
#[test]
fn test_multi_open() -> Result<(), PCSError> {
let mut rng = test_rng();
let params = MultilinearKzgPCS::<E>::gen_srs_for_testing(&mut rng, 15)?;
// normal polynomials
for nv in 1..10 {
for num_open in 1..4 {
let mut polys = vec![];
for _ in 0..num_open {
let poly = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
polys.push(poly)
}
test_multi_open_helper(&params, &polys, num_open, &mut rng)?;
}
}
Ok(())
}
}

+ 273
- 0
pcs/src/multilinear_kzg/srs.rs

@ -0,0 +1,273 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Implementing Structured Reference Strings for multilinear polynomial KZG
use crate::{prelude::PCSError, StructuredReferenceString};
use ark_ec::{msm::FixedBaseMSM, AffineCurve, PairingEngine, ProjectiveCurve};
use ark_ff::{Field, PrimeField};
use ark_poly::DenseMultilinearExtension;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{
collections::LinkedList,
end_timer, format,
rand::{CryptoRng, RngCore},
start_timer,
string::ToString,
vec::Vec,
UniformRand,
};
use core::iter::FromIterator;
/// Evaluations over {0,1}^n for G1 or G2
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct Evaluations<C: AffineCurve> {
/// The evaluations.
pub evals: Vec<C>,
}
/// Universal Parameter
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearUniversalParams<E: PairingEngine> {
/// prover parameters
pub prover_param: MultilinearProverParam<E>,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
/// Prover Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearProverParam<E: PairingEngine> {
/// number of variables
pub num_vars: usize,
/// `pp_{num_vars}`, `pp_{num_vars - 1}`, `pp_{num_vars - 2}`, ..., defined
/// by XZZPD19
pub powers_of_g: Vec<Evaluations<E::G1Affine>>,
/// generator for G1
pub g: E::G1Affine,
/// generator for G2
pub h: E::G2Affine,
}
/// Verifier Parameters
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug)]
pub struct MultilinearVerifierParam<E: PairingEngine> {
/// number of variables
pub num_vars: usize,
/// generator of G1
pub g: E::G1Affine,
/// generator of G2
pub h: E::G2Affine,
/// h^randomness: h^t1, h^t2, ..., **h^{t_nv}**
pub h_mask: Vec<E::G2Affine>,
}
impl<E: PairingEngine> StructuredReferenceString<E> for MultilinearUniversalParams<E> {
type ProverParam = MultilinearProverParam<E>;
type VerifierParam = MultilinearVerifierParam<E>;
/// Extract the prover parameters from the public parameters.
fn extract_prover_param(&self, supported_num_vars: usize) -> Self::ProverParam {
let to_reduce = self.prover_param.num_vars - supported_num_vars;
Self::ProverParam {
powers_of_g: self.prover_param.powers_of_g[to_reduce..].to_vec(),
g: self.prover_param.g,
h: self.prover_param.h,
num_vars: supported_num_vars,
}
}
/// Extract the verifier parameters from the public parameters.
fn extract_verifier_param(&self, supported_num_vars: usize) -> Self::VerifierParam {
let to_reduce = self.prover_param.num_vars - supported_num_vars;
Self::VerifierParam {
num_vars: supported_num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask[to_reduce..].to_vec(),
}
}
/// Trim the universal parameters to specialize the public parameters
/// for multilinear polynomials to the given `supported_num_vars`, and
/// returns committer key and verifier key. `supported_num_vars` should
/// be in range `1..=params.num_vars`
fn trim(
&self,
supported_num_vars: usize,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSError> {
if supported_num_vars > self.prover_param.num_vars {
return Err(PCSError::InvalidParameters(format!(
"SRS does not support target number of vars {}",
supported_num_vars
)));
}
let to_reduce = self.prover_param.num_vars - supported_num_vars;
let ck = Self::ProverParam {
powers_of_g: self.prover_param.powers_of_g[to_reduce..].to_vec(),
g: self.prover_param.g,
h: self.prover_param.h,
num_vars: supported_num_vars,
};
let vk = Self::VerifierParam {
num_vars: supported_num_vars,
g: self.prover_param.g,
h: self.prover_param.h,
h_mask: self.h_mask[to_reduce..].to_vec(),
};
Ok((ck, vk))
}
/// Build SRS for testing.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore + CryptoRng>(
rng: &mut R,
num_vars: usize,
) -> Result<Self, PCSError> {
if num_vars == 0 {
return Err(PCSError::InvalidParameters(
"constant polynomial not supported".to_string(),
));
}
let total_timer = start_timer!(|| "SRS generation");
let pp_generation_timer = start_timer!(|| "Prover Param generation");
let g = E::G1Projective::rand(rng);
let h = E::G2Projective::rand(rng);
let mut powers_of_g = Vec::new();
let t: Vec<_> = (0..num_vars).map(|_| E::Fr::rand(rng)).collect();
let scalar_bits = E::Fr::size_in_bits();
let mut eq: LinkedList<DenseMultilinearExtension<E::Fr>> =
LinkedList::from_iter(eq_extension(&t).into_iter());
let mut eq_arr = LinkedList::new();
let mut base = eq.pop_back().unwrap().evaluations;
for i in (0..num_vars).rev() {
eq_arr.push_front(remove_dummy_variable(&base, i)?);
if i != 0 {
let mul = eq.pop_back().unwrap().evaluations;
base = base
.into_iter()
.zip(mul.into_iter())
.map(|(a, b)| a * b)
.collect();
}
}
let mut pp_powers = Vec::new();
let mut total_scalars = 0;
for i in 0..num_vars {
let eq = eq_arr.pop_front().unwrap();
let pp_k_powers = (0..(1 << (num_vars - i))).map(|x| eq[x]);
pp_powers.extend(pp_k_powers);
total_scalars += 1 << (num_vars - i);
}
let window_size = FixedBaseMSM::get_mul_window_size(total_scalars);
let g_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, g);
let pp_g = E::G1Projective::batch_normalization_into_affine(
&FixedBaseMSM::multi_scalar_mul(scalar_bits, window_size, &g_table, &pp_powers),
);
let mut start = 0;
for i in 0..num_vars {
let size = 1 << (num_vars - i);
let pp_k_g = Evaluations {
evals: pp_g[start..(start + size)].to_vec(),
};
powers_of_g.push(pp_k_g);
start += size;
}
let pp = Self::ProverParam {
num_vars,
g: g.into_affine(),
h: h.into_affine(),
powers_of_g,
};
end_timer!(pp_generation_timer);
let vp_generation_timer = start_timer!(|| "VP generation");
let h_mask = {
let window_size = FixedBaseMSM::get_mul_window_size(num_vars);
let h_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, h);
E::G2Projective::batch_normalization_into_affine(&FixedBaseMSM::multi_scalar_mul(
scalar_bits,
window_size,
&h_table,
&t,
))
};
end_timer!(vp_generation_timer);
end_timer!(total_timer);
Ok(Self {
prover_param: pp,
h_mask,
})
}
}
/// fix first `pad` variables of `poly` represented in evaluation form to zero
fn remove_dummy_variable<F: Field>(poly: &[F], pad: usize) -> Result<Vec<F>, PCSError> {
if pad == 0 {
return Ok(poly.to_vec());
}
if !poly.len().is_power_of_two() {
return Err(PCSError::InvalidParameters(
"Size of polynomial should be power of two.".to_string(),
));
}
let nv = ark_std::log2(poly.len()) as usize - pad;
Ok((0..(1 << nv)).map(|x| poly[x << pad]).collect())
}
/// Generate eq(t,x), a product of multilinear polynomials with fixed t.
/// eq(a,b) is takes extensions of a,b in {0,1}^num_vars such that if a and b in
/// {0,1}^num_vars are equal then this polynomial evaluates to 1.
fn eq_extension<F: PrimeField>(t: &[F]) -> Vec<DenseMultilinearExtension<F>> {
let start = start_timer!(|| "eq extension");
let dim = t.len();
let mut result = Vec::new();
for (i, &ti) in t.iter().enumerate().take(dim) {
let mut poly = Vec::with_capacity(1 << dim);
for x in 0..(1 << dim) {
let xi = if x >> i & 1 == 1 { F::one() } else { F::zero() };
let ti_xi = ti * xi;
poly.push(ti_xi + ti_xi - xi - ti + F::one());
}
result.push(DenseMultilinearExtension::from_evaluations_vec(dim, poly));
}
end_timer!(start);
result
}
#[cfg(test)]
mod tests {
use super::*;
use ark_bls12_381::Bls12_381;
use ark_std::test_rng;
type E = Bls12_381;
#[test]
fn test_srs_gen() -> Result<(), PCSError> {
let mut rng = test_rng();
for nv in 4..10 {
let _ = MultilinearUniversalParams::<E>::gen_srs_for_testing(&mut rng, nv)?;
}
Ok(())
}
}

+ 432
- 0
pcs/src/multilinear_kzg/util.rs

@ -0,0 +1,432 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Useful utilities for KZG PCS
use crate::prelude::PCSError;
use arithmetic::evaluate_no_par;
use ark_ff::PrimeField;
use ark_poly::{
univariate::DensePolynomial, DenseMultilinearExtension, EvaluationDomain, Evaluations,
MultilinearExtension, Polynomial, Radix2EvaluationDomain,
};
use ark_std::{end_timer, format, log2, start_timer, string::ToString, vec::Vec};
use rayon::prelude::{IntoParallelIterator, ParallelIterator};
/// For an MLE w with `mle_num_vars` variables, and `point_len` number of
/// points, compute the degree of the univariate polynomial `q(x):= w(l(x))`
/// where l(x) is a list of polynomials that go through all points.
// uni_degree is computed as `mle_num_vars * point_len`:
// - each l(x) is of degree `point_len`
// - mle has degree one
// - worst case is `\prod_{i=0}^{mle_num_vars-1} l_i(x) < point_len * mle_num_vars`
#[inline]
pub fn compute_qx_degree(mle_num_vars: usize, point_len: usize) -> usize {
mle_num_vars * ((1 << log2(point_len)) - 1) + 1
}
/// Compute W \circ l.
///
/// Given an MLE W, and a list of univariate polynomials l, generate the
/// univariate polynomial that composes W with l.
///
/// Returns an error if l's length does not matches number of variables in W.
pub(crate) fn compute_w_circ_l<F: PrimeField>(
w: &DenseMultilinearExtension<F>,
l: &[DensePolynomial<F>],
num_points: usize,
with_suffix: bool,
) -> Result<DensePolynomial<F>, PCSError> {
let timer = start_timer!(|| "compute W \\circ l");
if w.num_vars != l.len() {
return Err(PCSError::InvalidParameters(format!(
"l's length ({}) does not match num_variables ({})",
l.len(),
w.num_vars(),
)));
}
let uni_degree = if with_suffix {
compute_qx_degree(w.num_vars() + log2(num_points) as usize, num_points)
} else {
compute_qx_degree(w.num_vars(), num_points)
};
let domain = match Radix2EvaluationDomain::<F>::new(uni_degree) {
Some(p) => p,
None => {
return Err(PCSError::InvalidParameters(
"failed to build radix 2 domain".to_string(),
))
},
};
let step = start_timer!(|| format!("compute eval {}-dim domain", domain.size()));
let res_eval = (0..domain.size())
.into_par_iter()
.map(|i| {
let l_eval: Vec<F> = l.iter().map(|x| x.evaluate(&domain.element(i))).collect();
evaluate_no_par(w, &l_eval)
})
.collect();
end_timer!(step);
let evaluation = Evaluations::from_vec_and_domain(res_eval, domain);
let res = evaluation.interpolate();
end_timer!(timer);
Ok(res)
}
/// Input a list of multilinear polynomials and a list of points,
/// generate a list of evaluations.
// Note that this function is only used for testing verifications.
// In practice verifier does not see polynomials, and the `mle_values`
// are included in the `batch_proof`.
#[cfg(test)]
pub(crate) fn generate_evaluations_multi_poly<F: PrimeField>(
polynomials: &[std::rc::Rc<DenseMultilinearExtension<F>>],
points: &[Vec<F>],
) -> Result<Vec<F>, PCSError> {
use arithmetic::{build_l, get_uni_domain, merge_polynomials};
if polynomials.len() != points.len() {
return Err(PCSError::InvalidParameters(
"polynomial length does not match point length".to_string(),
));
}
let uni_poly_degree = points.len();
let merge_poly = merge_polynomials(polynomials)?;
let domain = get_uni_domain::<F>(uni_poly_degree)?;
let uni_polys = build_l(points, &domain, true)?;
let mut mle_values = vec![];
for i in 0..uni_poly_degree {
let point: Vec<F> = uni_polys
.iter()
.map(|poly| poly.evaluate(&domain.element(i)))
.collect();
let mle_value = merge_poly.evaluate(&point).unwrap();
mle_values.push(mle_value)
}
Ok(mle_values)
}
/// Input a list of multilinear polynomials and a list of points,
/// generate a list of evaluations.
// Note that this function is only used for testing verifications.
// In practice verifier does not see polynomials, and the `mle_values`
// are included in the `batch_proof`.
#[cfg(test)]
pub(crate) fn generate_evaluations_single_poly<F: PrimeField>(
polynomial: &std::rc::Rc<DenseMultilinearExtension<F>>,
points: &[Vec<F>],
) -> Result<Vec<F>, PCSError> {
use arithmetic::{build_l, get_uni_domain};
let uni_poly_degree = points.len();
let domain = get_uni_domain::<F>(uni_poly_degree)?;
let uni_polys = build_l(points, &domain, false)?;
let mut mle_values = vec![];
for i in 0..uni_poly_degree {
let point: Vec<F> = uni_polys
.iter()
.map(|poly| poly.evaluate(&domain.element(i)))
.collect();
let mle_value = polynomial.evaluate(&point).unwrap();
mle_values.push(mle_value)
}
Ok(mle_values)
}
#[cfg(test)]
mod test {
use super::*;
use arithmetic::{build_l, get_uni_domain, merge_polynomials};
use ark_bls12_381::Fr;
use ark_poly::UVPolynomial;
use ark_std::{One, Zero};
use std::rc::Rc;
#[test]
fn test_w_circ_l() -> Result<(), PCSError> {
test_w_circ_l_helper::<Fr>()
}
fn test_w_circ_l_helper<F: PrimeField>() -> Result<(), PCSError> {
{
// Example from page 53:
// W = 3x1x2 + 2x2 whose evaluations are
// 0, 0 |-> 0
// 1, 0 |-> 0
// 0, 1 |-> 2
// 1, 1 |-> 5
let w_eval = vec![F::zero(), F::zero(), F::from(2u64), F::from(5u64)];
let w = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
// l0 = t + 2
// l1 = -2t + 4
let l0 = DensePolynomial::from_coefficients_vec(vec![F::from(2u64), F::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![F::from(4u64), -F::from(2u64)]);
// res = -6t^2 - 4t + 32
let res = compute_w_circ_l(&w, [l0, l1].as_ref(), 4, false)?;
let res_rec = DensePolynomial::from_coefficients_vec(vec![
F::from(32u64),
-F::from(4u64),
-F::from(6u64),
]);
assert_eq!(res, res_rec);
}
{
// A random example
// W = x1x2x3 - 2x1x2 + 3x2x3 - 4x1x3 + 5x1 - 6x2 + 7x3
// 0, 0, 0 |-> 0
// 1, 0, 0 |-> 5
// 0, 1, 0 |-> -6
// 1, 1, 0 |-> -3
// 0, 0, 1 |-> 7
// 1, 0, 1 |-> 8
// 0, 1, 1 |-> 4
// 1, 1, 1 |-> 4
let w_eval = vec![
F::zero(),
F::from(5u64),
-F::from(6u64),
-F::from(3u64),
F::from(7u64),
F::from(8u64),
F::from(4u64),
F::from(4u64),
];
let w = DenseMultilinearExtension::from_evaluations_vec(3, w_eval);
// l0 = t + 2
// l1 = 3t - 4
// l2 = -5t + 6
let l0 = DensePolynomial::from_coefficients_vec(vec![F::from(2u64), F::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![-F::from(4u64), F::from(3u64)]);
let l2 = DensePolynomial::from_coefficients_vec(vec![F::from(6u64), -F::from(5u64)]);
let res = compute_w_circ_l(&w, [l0, l1, l2].as_ref(), 8, false)?;
// res = -15t^3 - 23t^2 + 130t - 76
let res_rec = DensePolynomial::from_coefficients_vec(vec![
-F::from(76u64),
F::from(130u64),
-F::from(23u64),
-F::from(15u64),
]);
assert_eq!(res, res_rec);
}
Ok(())
}
#[test]
fn test_w_circ_l_with_prefix() -> Result<(), PCSError> {
test_w_circ_l_with_prefix_helper::<Fr>()
}
fn test_w_circ_l_with_prefix_helper<F: PrimeField>() -> Result<(), PCSError> {
{
// Example from page 53:
// W = 3x1x2 + 2x2 whose evaluations are
// 0, 0 |-> 0
// 1, 0 |-> 0
// 0, 1 |-> 2
// 1, 1 |-> 5
let w_eval = vec![F::zero(), F::zero(), F::from(2u64), F::from(5u64)];
let w = DenseMultilinearExtension::from_evaluations_vec(2, w_eval);
// l0 = t + 2
// l1 = -2t + 4
let l0 = DensePolynomial::from_coefficients_vec(vec![F::from(2u64), F::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![F::from(4u64), -F::from(2u64)]);
// res = -6t^2 - 4t + 32
let res = compute_w_circ_l(&w, [l0, l1].as_ref(), 4, true)?;
let res_rec = DensePolynomial::from_coefficients_vec(vec![
F::from(32u64),
-F::from(4u64),
-F::from(6u64),
]);
assert_eq!(res, res_rec);
}
{
// A random example
// W = x1x2x3 - 2x1x2 + 3x2x3 - 4x1x3 + 5x1 - 6x2 + 7x3
// 0, 0, 0 |-> 0
// 1, 0, 0 |-> 5
// 0, 1, 0 |-> -6
// 1, 1, 0 |-> -3
// 0, 0, 1 |-> 7
// 1, 0, 1 |-> 8
// 0, 1, 1 |-> 4
// 1, 1, 1 |-> 4
let w_eval = vec![
F::zero(),
F::from(5u64),
-F::from(6u64),
-F::from(3u64),
F::from(7u64),
F::from(8u64),
F::from(4u64),
F::from(4u64),
];
let w = DenseMultilinearExtension::from_evaluations_vec(3, w_eval);
// l0 = t + 2
// l1 = 3t - 4
// l2 = -5t + 6
let l0 = DensePolynomial::from_coefficients_vec(vec![F::from(2u64), F::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![-F::from(4u64), F::from(3u64)]);
let l2 = DensePolynomial::from_coefficients_vec(vec![F::from(6u64), -F::from(5u64)]);
let res = compute_w_circ_l(&w, [l0, l1, l2].as_ref(), 8, true)?;
// res = -15t^3 - 23t^2 + 130t - 76
let res_rec = DensePolynomial::from_coefficients_vec(vec![
-F::from(76u64),
F::from(130u64),
-F::from(23u64),
-F::from(15u64),
]);
assert_eq!(res, res_rec);
}
Ok(())
}
#[test]
fn test_qx() -> Result<(), PCSError> {
// Example from page 53:
// W1 = 3x1x2 + 2x2
let w_eval = vec![Fr::zero(), Fr::from(2u64), Fr::zero(), Fr::from(5u64)];
let w = Rc::new(DenseMultilinearExtension::from_evaluations_vec(2, w_eval));
let r = Fr::from(42u64);
// point 1 is [1, 2]
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let domain = get_uni_domain::<Fr>(2)?;
let l = build_l(&[point1.clone(), point2.clone()], &domain, false)?;
let q_x = compute_w_circ_l(&w, &l, 2, false)?;
let point: Vec<Fr> = l.iter().map(|poly| poly.evaluate(&r)).collect();
assert_eq!(
q_x.evaluate(&r),
w.evaluate(&point).unwrap(),
"q(r) != w(l(r))"
);
}
{
let domain = get_uni_domain::<Fr>(3)?;
let l = build_l(&[point1, point2, point3], &domain, false)?;
let q_x = compute_w_circ_l(&w, &l, 3, false)?;
let point: Vec<Fr> = vec![l[0].evaluate(&r), l[1].evaluate(&r)];
assert_eq!(
q_x.evaluate(&r),
w.evaluate(&point).unwrap(),
"q(r) != w(l(r))"
);
}
Ok(())
}
#[test]
fn test_qx_with_prefix() -> Result<(), PCSError> {
// Example from page 53:
// W1 = 3x1x2 + 2x2
let w_eval = vec![Fr::zero(), Fr::from(2u64), Fr::zero(), Fr::from(5u64)];
let w1 = Rc::new(DenseMultilinearExtension::from_evaluations_vec(2, w_eval));
// W2 = x1x2 + x1
let w_eval = vec![Fr::zero(), Fr::zero(), Fr::from(1u64), Fr::from(2u64)];
let w2 = Rc::new(DenseMultilinearExtension::from_evaluations_vec(2, w_eval));
// W3 = x1 + x2
let w_eval = vec![Fr::zero(), Fr::one(), Fr::from(1u64), Fr::from(2u64)];
let w3 = Rc::new(DenseMultilinearExtension::from_evaluations_vec(2, w_eval));
let r = Fr::from(42u64);
// point 1 is [1, 2]
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let domain = get_uni_domain::<Fr>(2)?;
// w = (3x1x2 + 2x2)(1-x0) + (x1x2 + x1)x0
// with evaluations: [0,2,0,5,0,0,1,2]
let w = merge_polynomials(&[w1.clone(), w2.clone()])?;
let l = build_l(&[point1.clone(), point2.clone()], &domain, true)?;
// sage: P.<x> = PolynomialRing(ZZ)
// sage: l0 = -1/2 * x + 1/2
// sage: l1 = -x + 2
// sage: l2 = -x + 3
// sage: w = (3 * l1 * l2 + 2 * l2) * (1-l0) + (l1 * l2 + l1) * l0
// sage: w
// x^3 - 7/2*x^2 - 7/2*x + 16
//
// q(x) = x^3 - 7/2*x^2 - 7/2*x + 16
let q_x = compute_w_circ_l(&w, &l, 2, true)?;
let point: Vec<Fr> = l.iter().map(|poly| poly.evaluate(&r)).collect();
assert_eq!(
q_x.evaluate(&r),
w.evaluate(&point).unwrap(),
"q(r) != w(l(r))"
);
}
{
let domain = get_uni_domain::<Fr>(3)?;
let w = merge_polynomials(&[w1, w2, w3])?;
let l = build_l(&[point1, point2, point3], &domain, true)?;
let q_x = compute_w_circ_l(&w, &l, 3, true)?;
let point: Vec<Fr> = vec![
l[0].evaluate(&r),
l[1].evaluate(&r),
l[2].evaluate(&r),
l[3].evaluate(&r),
];
assert_eq!(
q_x.evaluate(&r),
w.evaluate(&point).unwrap(),
"q(r) != w(l(r))"
);
}
Ok(())
}
}

+ 21
- 0
pcs/src/prelude.rs

@ -0,0 +1,21 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Prelude
pub use crate::{
errors::PCSError,
multilinear_kzg::{
srs::{MultilinearProverParam, MultilinearUniversalParams, MultilinearVerifierParam},
util::compute_qx_degree,
MultilinearKzgBatchProof, MultilinearKzgPCS, MultilinearKzgProof,
},
structs::Commitment,
univariate_kzg::{
srs::{UnivariateProverParam, UnivariateUniversalParams, UnivariateVerifierParam},
UnivariateKzgBatchProof, UnivariateKzgPCS, UnivariateKzgProof,
},
PolynomialCommitmentScheme, StructuredReferenceString,
};

+ 25
- 0
pcs/src/structs.rs

@ -0,0 +1,25 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
use ark_ec::PairingEngine;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use derivative::Derivative;
#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(
Default(bound = ""),
Hash(bound = ""),
Clone(bound = ""),
Copy(bound = ""),
Debug(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
/// A commitment is an Affine point.
pub struct Commitment<E: PairingEngine>(
/// the actual commitment is an affine point.
pub E::G1Affine,
);

+ 438
- 0
pcs/src/univariate_kzg/mod.rs

@ -0,0 +1,438 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Main module for univariate KZG commitment scheme
use crate::{prelude::Commitment, PCSError, PolynomialCommitmentScheme, StructuredReferenceString};
use ark_ec::{msm::VariableBaseMSM, AffineCurve, PairingEngine, ProjectiveCurve};
use ark_ff::PrimeField;
use ark_poly::{univariate::DensePolynomial, Polynomial, UVPolynomial};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{
borrow::Borrow,
end_timer, format,
marker::PhantomData,
rand::{CryptoRng, RngCore},
start_timer,
string::ToString,
vec,
vec::Vec,
One, UniformRand, Zero,
};
#[cfg(feature = "parallel")]
use rayon::prelude::*;
use srs::{UnivariateProverParam, UnivariateUniversalParams, UnivariateVerifierParam};
use util::parallelizable_slice_iter;
pub(crate) mod srs;
/// KZG Polynomial Commitment Scheme on univariate polynomial.
pub struct UnivariateKzgPCS<E: PairingEngine> {
#[doc(hidden)]
phantom: PhantomData<E>,
}
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, PartialEq, Eq)]
/// proof of opening
pub struct UnivariateKzgProof<E: PairingEngine> {
/// Evaluation of quotients
pub proof: E::G1Affine,
}
/// batch proof
pub type UnivariateKzgBatchProof<E> = Vec<UnivariateKzgProof<E>>;
impl<E: PairingEngine> PolynomialCommitmentScheme<E> for UnivariateKzgPCS<E> {
// Parameters
type ProverParam = UnivariateProverParam<E::G1Affine>;
type VerifierParam = UnivariateVerifierParam<E>;
type SRS = UnivariateUniversalParams<E>;
// Polynomial and its associated types
type Polynomial = DensePolynomial<E::Fr>;
type Point = E::Fr;
type Evaluation = E::Fr;
// Polynomial and its associated types
type Commitment = Commitment<E>;
type BatchCommitment = Vec<Self::Commitment>;
type Proof = UnivariateKzgProof<E>;
type BatchProof = UnivariateKzgBatchProof<E>;
/// Build SRS for testing.
///
/// - For univariate polynomials, `supported_size` is the maximum degree.
///
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore + CryptoRng>(
rng: &mut R,
supported_size: usize,
) -> Result<Self::SRS, PCSError> {
Self::SRS::gen_srs_for_testing(rng, supported_size)
}
/// Trim the universal parameters to specialize the public parameters.
/// Input `max_degree` for univariate.
/// `supported_num_vars` must be None or an error is returned.
fn trim(
srs: impl Borrow<Self::SRS>,
supported_degree: usize,
supported_num_vars: Option<usize>,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSError> {
if supported_num_vars.is_some() {
return Err(PCSError::InvalidParameters(
"univariate should not receive a num_var param".to_string(),
));
}
srs.borrow().trim(supported_degree)
}
/// Generate a commitment for a polynomial
/// Note that the scheme is not hidding
fn commit(
prover_param: impl Borrow<Self::ProverParam>,
poly: &Self::Polynomial,
) -> Result<Self::Commitment, PCSError> {
let prover_param = prover_param.borrow();
let commit_time =
start_timer!(|| format!("Committing to polynomial of degree {} ", poly.degree()));
if poly.degree() >= prover_param.powers_of_g.len() {
return Err(PCSError::InvalidParameters(format!(
"uni poly degree {} is larger than allowed {}",
poly.degree(),
prover_param.powers_of_g.len()
)));
}
let (num_leading_zeros, plain_coeffs) = skip_leading_zeros_and_convert_to_bigints(poly);
let msm_time = start_timer!(|| "MSM to compute commitment to plaintext poly");
let commitment = VariableBaseMSM::multi_scalar_mul(
&prover_param.powers_of_g[num_leading_zeros..],
&plain_coeffs,
)
.into_affine();
end_timer!(msm_time);
end_timer!(commit_time);
Ok(Commitment(commitment))
}
/// Generate a commitment for a list of polynomials
fn multi_commit(
prover_param: impl Borrow<Self::ProverParam>,
polys: &[Self::Polynomial],
) -> Result<Self::BatchCommitment, PCSError> {
let prover_param = prover_param.borrow();
let commit_time = start_timer!(|| format!("batch commit {} polynomials", polys.len()));
let res = parallelizable_slice_iter(polys)
.map(|poly| Self::commit(prover_param, poly))
.collect::<Result<Vec<Self::Commitment>, PCSError>>()?;
end_timer!(commit_time);
Ok(res)
}
/// On input a polynomial `p` and a point `point`, outputs a proof for the
/// same.
fn open(
prover_param: impl Borrow<Self::ProverParam>,
polynomial: &Self::Polynomial,
point: &Self::Point,
) -> Result<(Self::Proof, Self::Evaluation), PCSError> {
let open_time =
start_timer!(|| format!("Opening polynomial of degree {}", polynomial.degree()));
let divisor = Self::Polynomial::from_coefficients_vec(vec![-*point, E::Fr::one()]);
let witness_time = start_timer!(|| "Computing witness polynomial");
let witness_polynomial = polynomial / &divisor;
end_timer!(witness_time);
let (num_leading_zeros, witness_coeffs) =
skip_leading_zeros_and_convert_to_bigints(&witness_polynomial);
let proof = VariableBaseMSM::multi_scalar_mul(
&prover_param.borrow().powers_of_g[num_leading_zeros..],
&witness_coeffs,
)
.into_affine();
let eval = polynomial.evaluate(point);
end_timer!(open_time);
Ok((Self::Proof { proof }, eval))
}
/// Input a list of polynomials, and a same number of points,
/// compute a multi-opening for all the polynomials.
// This is a naive approach
// TODO: to implement the more efficient batch opening algorithm
// (e.g., the appendix C.4 in https://eprint.iacr.org/2020/1536.pdf)
fn multi_open(
prover_param: impl Borrow<Self::ProverParam>,
_multi_commitment: &Self::BatchCommitment,
polynomials: &[Self::Polynomial],
points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSError> {
let open_time = start_timer!(|| format!("batch opening {} polynomials", polynomials.len()));
if polynomials.len() != points.len() {
return Err(PCSError::InvalidParameters(format!(
"poly length {} is different from points length {}",
polynomials.len(),
points.len()
)));
}
let mut batch_proof = vec![];
let mut evals = vec![];
for (poly, point) in polynomials.iter().zip(points.iter()) {
let (proof, eval) = Self::open(prover_param.borrow(), poly, point)?;
batch_proof.push(proof);
evals.push(eval);
}
end_timer!(open_time);
Ok((batch_proof, evals))
}
/// Input a multilinear extension, and a number of points, and
/// a transcript, compute a multi-opening for all the polynomials.
fn multi_open_single_poly(
_prover_param: impl Borrow<Self::ProverParam>,
_commitment: &Self::Commitment,
_polynomials: &Self::Polynomial,
_points: &[Self::Point],
) -> Result<(Self::BatchProof, Vec<Self::Evaluation>), PCSError> {
unimplemented!()
}
/// Verifies that `value` is the evaluation at `x` of the polynomial
/// committed inside `comm`.
fn verify(
verifier_param: &Self::VerifierParam,
commitment: &Self::Commitment,
point: &Self::Point,
value: &E::Fr,
proof: &Self::Proof,
) -> Result<bool, PCSError> {
let check_time = start_timer!(|| "Checking evaluation");
let pairing_inputs: Vec<(E::G1Prepared, E::G2Prepared)> = vec![
(
(verifier_param.g.mul(value.into_repr())
- proof.proof.mul(point.into_repr())
- commitment.0.into_projective())
.into_affine()
.into(),
verifier_param.h.into(),
),
(proof.proof.into(), verifier_param.beta_h.into()),
];
let res = E::product_of_pairings(pairing_inputs.iter()).is_one();
end_timer!(check_time, || format!("Result: {}", res));
Ok(res)
}
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly_i` committed inside `comm`.
// This is a naive approach
// TODO: to implement the more efficient batch verification algorithm
// (e.g., the appendix C.4 in https://eprint.iacr.org/2020/1536.pdf)
fn batch_verify<R: RngCore + CryptoRng>(
verifier_param: &Self::VerifierParam,
multi_commitment: &Self::BatchCommitment,
points: &[Self::Point],
values: &[E::Fr],
batch_proof: &Self::BatchProof,
rng: &mut R,
) -> Result<bool, PCSError> {
let check_time =
start_timer!(|| format!("Checking {} evaluation proofs", multi_commitment.len()));
let mut total_c = <E::G1Projective>::zero();
let mut total_w = <E::G1Projective>::zero();
let combination_time = start_timer!(|| "Combining commitments and proofs");
let mut randomizer = E::Fr::one();
// Instead of multiplying g and gamma_g in each turn, we simply accumulate
// their coefficients and perform a final multiplication at the end.
let mut g_multiplier = E::Fr::zero();
for (((c, z), v), proof) in multi_commitment
.iter()
.zip(points)
.zip(values)
.zip(batch_proof)
{
let w = proof.proof;
let mut temp = w.mul(*z);
temp.add_assign_mixed(&c.0);
let c = temp;
g_multiplier += &(randomizer * v);
total_c += &c.mul(randomizer.into_repr());
total_w += &w.mul(randomizer.into_repr());
// We don't need to sample randomizers from the full field,
// only from 128-bit strings.
randomizer = u128::rand(rng).into();
}
total_c -= &verifier_param.g.mul(g_multiplier);
end_timer!(combination_time);
let to_affine_time = start_timer!(|| "Converting results to affine for pairing");
let affine_points = E::G1Projective::batch_normalization_into_affine(&[-total_w, total_c]);
let (total_w, total_c) = (affine_points[0], affine_points[1]);
end_timer!(to_affine_time);
let pairing_time = start_timer!(|| "Performing product of pairings");
let result = E::product_of_pairings(&[
(total_w.into(), verifier_param.beta_h.into()),
(total_c.into(), verifier_param.h.into()),
])
.is_one();
end_timer!(pairing_time);
end_timer!(check_time, || format!("Result: {}", result));
Ok(result)
}
/// Verifies that `value_i` is the evaluation at `x_i` of the polynomial
/// `poly` committed inside `comm`.
fn batch_verify_single_poly(
_verifier_param: &Self::VerifierParam,
_commitment: &Self::Commitment,
_points: &[Self::Point],
_values: &[E::Fr],
_batch_proof: &Self::BatchProof,
) -> Result<bool, PCSError> {
unimplemented!()
}
}
fn skip_leading_zeros_and_convert_to_bigints<F: PrimeField, P: UVPolynomial<F>>(
p: &P,
) -> (usize, Vec<F::BigInt>) {
let mut num_leading_zeros = 0;
while num_leading_zeros < p.coeffs().len() && p.coeffs()[num_leading_zeros].is_zero() {
num_leading_zeros += 1;
}
let coeffs = convert_to_bigints(&p.coeffs()[num_leading_zeros..]);
(num_leading_zeros, coeffs)
}
fn convert_to_bigints<F: PrimeField>(p: &[F]) -> Vec<F::BigInt> {
let to_bigint_time = start_timer!(|| "Converting polynomial coeffs to bigints");
let coeffs = p.iter().map(|s| s.into_repr()).collect::<Vec<_>>();
end_timer!(to_bigint_time);
coeffs
}
#[cfg(test)]
mod tests {
use super::*;
use crate::StructuredReferenceString;
use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine;
use ark_poly::univariate::DensePolynomial;
use ark_std::{test_rng, UniformRand};
fn end_to_end_test_template<E>() -> Result<(), PCSError>
where
E: PairingEngine,
{
let rng = &mut test_rng();
for _ in 0..100 {
let mut degree = 0;
while degree <= 1 {
degree = usize::rand(rng) % 20;
}
let pp = UnivariateKzgPCS::<E>::gen_srs_for_testing(rng, degree)?;
let (ck, vk) = pp.trim(degree)?;
let p = <DensePolynomial<E::Fr> as UVPolynomial<E::Fr>>::rand(degree, rng);
let comm = UnivariateKzgPCS::<E>::commit(&ck, &p)?;
let point = E::Fr::rand(rng);
let (proof, value) = UnivariateKzgPCS::<E>::open(&ck, &p, &point)?;
assert!(
UnivariateKzgPCS::<E>::verify(&vk, &comm, &point, &value, &proof)?,
"proof was incorrect for max_degree = {}, polynomial_degree = {}",
degree,
p.degree(),
);
}
Ok(())
}
fn linear_polynomial_test_template<E>() -> Result<(), PCSError>
where
E: PairingEngine,
{
let rng = &mut test_rng();
for _ in 0..100 {
let degree = 50;
let pp = UnivariateKzgPCS::<E>::gen_srs_for_testing(rng, degree)?;
let (ck, vk) = pp.trim(degree)?;
let p = <DensePolynomial<E::Fr> as UVPolynomial<E::Fr>>::rand(degree, rng);
let comm = UnivariateKzgPCS::<E>::commit(&ck, &p)?;
let point = E::Fr::rand(rng);
let (proof, value) = UnivariateKzgPCS::<E>::open(&ck, &p, &point)?;
assert!(
UnivariateKzgPCS::<E>::verify(&vk, &comm, &point, &value, &proof)?,
"proof was incorrect for max_degree = {}, polynomial_degree = {}",
degree,
p.degree(),
);
}
Ok(())
}
fn batch_check_test_template<E>() -> Result<(), PCSError>
where
E: PairingEngine,
{
let rng = &mut test_rng();
for _ in 0..10 {
let mut degree = 0;
while degree <= 1 {
degree = usize::rand(rng) % 20;
}
let pp = UnivariateKzgPCS::<E>::gen_srs_for_testing(rng, degree)?;
let (ck, vk) = UnivariateKzgPCS::<E>::trim(&pp, degree, None)?;
let mut comms = Vec::new();
let mut values = Vec::new();
let mut points = Vec::new();
let mut proofs = Vec::new();
for _ in 0..10 {
let p = <DensePolynomial<E::Fr> as UVPolynomial<E::Fr>>::rand(degree, rng);
let comm = UnivariateKzgPCS::<E>::commit(&ck, &p)?;
let point = E::Fr::rand(rng);
let (proof, value) = UnivariateKzgPCS::<E>::open(&ck, &p, &point)?;
assert!(UnivariateKzgPCS::<E>::verify(
&vk, &comm, &point, &value, &proof
)?);
comms.push(comm);
values.push(value);
points.push(point);
proofs.push(proof);
}
assert!(UnivariateKzgPCS::<E>::batch_verify(
&vk, &comms, &points, &values, &proofs, rng
)?);
}
Ok(())
}
#[test]
fn end_to_end_test() {
end_to_end_test_template::<Bls12_381>().expect("test failed for bls12-381");
}
#[test]
fn linear_polynomial_test() {
linear_polynomial_test_template::<Bls12_381>().expect("test failed for bls12-381");
}
#[test]
fn batch_check_test() {
batch_check_test_template::<Bls12_381>().expect("test failed for bls12-381");
}
}

+ 156
- 0
pcs/src/univariate_kzg/srs.rs

@ -0,0 +1,156 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Implementing Structured Reference Strings for univariate polynomial KZG
use crate::{PCSError, StructuredReferenceString};
use ark_ec::{msm::FixedBaseMSM, AffineCurve, PairingEngine, ProjectiveCurve};
use ark_ff::PrimeField;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize, Read, SerializationError, Write};
use ark_std::{
end_timer,
rand::{CryptoRng, RngCore},
start_timer, vec,
vec::Vec,
One, UniformRand,
};
use derivative::Derivative;
/// `UniversalParams` are the universal parameters for the KZG10 scheme.
// Adapted from
// https://github.com/arkworks-rs/poly-commit/blob/master/src/kzg10/data_structures.rs#L20
#[derive(Debug, Clone, Eq, PartialEq, CanonicalSerialize, CanonicalDeserialize, Default)]
pub struct UnivariateUniversalParams<E: PairingEngine> {
/// Group elements of the form `{ \beta^i G }`, where `i` ranges from 0 to
/// `degree`.
pub powers_of_g: Vec<E::G1Affine>,
/// The generator of G2.
pub h: E::G2Affine,
/// \beta times the above generator of G2.
pub beta_h: E::G2Affine,
}
impl<E: PairingEngine> UnivariateUniversalParams<E> {
/// Returns the maximum supported degree
pub fn max_degree(&self) -> usize {
self.powers_of_g.len()
}
}
/// `UnivariateProverParam` is used to generate a proof
#[derive(CanonicalSerialize, CanonicalDeserialize, Clone, Debug, Eq, PartialEq, Default)]
pub struct UnivariateProverParam<C: AffineCurve> {
/// Parameters
pub powers_of_g: Vec<C>,
}
/// `UnivariateVerifierParam` is used to check evaluation proofs for a given
/// commitment.
#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(
Default(bound = ""),
Clone(bound = ""),
Copy(bound = ""),
Debug(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
pub struct UnivariateVerifierParam<E: PairingEngine> {
/// The generator of G1.
pub g: E::G1Affine,
/// The generator of G2.
pub h: E::G2Affine,
/// \beta times the above generator of G2.
pub beta_h: E::G2Affine,
}
impl<E: PairingEngine> StructuredReferenceString<E> for UnivariateUniversalParams<E> {
type ProverParam = UnivariateProverParam<E::G1Affine>;
type VerifierParam = UnivariateVerifierParam<E>;
/// Extract the prover parameters from the public parameters.
fn extract_prover_param(&self, supported_size: usize) -> Self::ProverParam {
let powers_of_g = self.powers_of_g[..=supported_size].to_vec();
Self::ProverParam { powers_of_g }
}
/// Extract the verifier parameters from the public parameters.
fn extract_verifier_param(&self, _supported_size: usize) -> Self::VerifierParam {
Self::VerifierParam {
g: self.powers_of_g[0],
h: self.h,
beta_h: self.beta_h,
}
}
/// Trim the universal parameters to specialize the public parameters
/// for univariate polynomials to the given `supported_size`, and
/// returns committer key and verifier key. `supported_size` should
/// be in range `1..params.len()`
fn trim(
&self,
supported_size: usize,
) -> Result<(Self::ProverParam, Self::VerifierParam), PCSError> {
let powers_of_g = self.powers_of_g[..=supported_size].to_vec();
let pk = Self::ProverParam { powers_of_g };
let vk = Self::VerifierParam {
g: self.powers_of_g[0],
h: self.h,
beta_h: self.beta_h,
};
Ok((pk, vk))
}
/// Build SRS for testing.
/// WARNING: THIS FUNCTION IS FOR TESTING PURPOSE ONLY.
/// THE OUTPUT SRS SHOULD NOT BE USED IN PRODUCTION.
fn gen_srs_for_testing<R: RngCore + CryptoRng>(
rng: &mut R,
max_degree: usize,
) -> Result<Self, PCSError> {
let setup_time = start_timer!(|| format!("KZG10::Setup with degree {}", max_degree));
let beta = E::Fr::rand(rng);
let g = E::G1Projective::rand(rng);
let h = E::G2Projective::rand(rng);
let mut powers_of_beta = vec![E::Fr::one()];
let mut cur = beta;
for _ in 0..max_degree {
powers_of_beta.push(cur);
cur *= &beta;
}
let window_size = FixedBaseMSM::get_mul_window_size(max_degree + 1);
let scalar_bits = E::Fr::size_in_bits();
let g_time = start_timer!(|| "Generating powers of G");
// TODO: parallelization
let g_table = FixedBaseMSM::get_window_table(scalar_bits, window_size, g);
let powers_of_g = FixedBaseMSM::multi_scalar_mul::<E::G1Projective>(
scalar_bits,
window_size,
&g_table,
&powers_of_beta,
);
end_timer!(g_time);
let powers_of_g = E::G1Projective::batch_normalization_into_affine(&powers_of_g);
let h = h.into_affine();
let beta_h = h.mul(beta).into_affine();
let pp = Self {
powers_of_g,
h,
beta_h,
};
end_timer!(setup_time);
Ok(pp)
}
}

+ 8
- 4
poly-iop/Cargo.toml

@ -20,8 +20,8 @@ rayon = { version = "1.5.2", default-features = false, optional = true }
transcript = { path = "../transcript" }
arithmetic = { path = "../arithmetic" }
jf-primitives = { git = "https://github.com/EspressoSystems/jellyfish", rev = "ff43209" }
pcs = { path = "../pcs" }
util = { path = "../util" }
[dev-dependencies]
ark-ec = { version = "^0.3.0", default-features = false }
@ -35,16 +35,20 @@ harness = false
[features]
# default = [ "parallel", "print-trace" ]
default = [ "parallel" ]
# extensive sanity checks that are useful for debugging
extensive_sanity_checks = [
"pcs/extensive_sanity_checks",
]
parallel = [
"rayon",
"arithmetic/parallel",
"ark-std/parallel",
"ark-ff/parallel",
"ark-poly/parallel",
"jf-primitives/parallel",
"pcs/parallel",
"util/parallel"
]
print-trace = [
"arithmetic/print-trace",
"ark-std/print-trace",
"jf-primitives/print-trace",
]

+ 16
- 17
poly-iop/benches/bench.rs

@ -1,15 +1,14 @@
use arithmetic::{VPAuxInfo, VirtualPolynomial};
use arithmetic::{identity_permutation_mle, VPAuxInfo, VirtualPolynomial};
use ark_bls12_381::{Bls12_381, Fr};
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::test_rng;
use jf_primitives::pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme};
use pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme};
use poly_iop::prelude::{
identity_permutation_mle, PermutationCheck, PolyIOP, PolyIOPErrors, ProductCheck, SumCheck,
ZeroCheck,
PermutationCheck, PolyIOP, PolyIOPErrors, ProductCheck, SumCheck, ZeroCheck,
};
use std::{marker::PhantomData, rc::Rc, time::Instant};
type Kzg = MultilinearKzgPCS<Bls12_381>;
type KZG = MultilinearKzgPCS<Bls12_381>;
fn main() -> Result<(), PolyIOPErrors> {
bench_permutation_check()?;
@ -140,8 +139,8 @@ fn bench_permutation_check() -> Result<(), PolyIOPErrors> {
let mut rng = test_rng();
for nv in 4..20 {
let srs = Kzg::gen_srs_for_testing(&mut rng, nv + 1)?;
let (pcs_param, _) = Kzg::trim(&srs, nv + 1, Some(nv + 1))?;
let srs = KZG::gen_srs_for_testing(&mut rng, nv + 1)?;
let (pcs_param, _) = KZG::trim(&srs, nv + 1, Some(nv + 1))?;
let repetition = if nv < 10 {
100
@ -159,10 +158,10 @@ fn bench_permutation_check() -> Result<(), PolyIOPErrors> {
let proof = {
let start = Instant::now();
let mut transcript =
<PolyIOP<Fr> as PermutationCheck<Bls12_381, Kzg>>::init_transcript();
<PolyIOP<Fr> as PermutationCheck<Bls12_381, KZG>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let (proof, _q_x) = <PolyIOP<Fr> as PermutationCheck<Bls12_381, Kzg>>::prove(
let (proof, _q_x) = <PolyIOP<Fr> as PermutationCheck<Bls12_381, KZG>>::prove(
&pcs_param,
&w,
&w,
@ -187,9 +186,9 @@ fn bench_permutation_check() -> Result<(), PolyIOPErrors> {
let start = Instant::now();
let mut transcript =
<PolyIOP<Fr> as PermutationCheck<Bls12_381, Kzg>>::init_transcript();
<PolyIOP<Fr> as PermutationCheck<Bls12_381, KZG>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let _perm_check_sum_claim = <PolyIOP<Fr> as PermutationCheck<Bls12_381, Kzg>>::verify(
let _perm_check_sum_claim = <PolyIOP<Fr> as PermutationCheck<Bls12_381, KZG>>::verify(
&proof,
&poly_info,
&mut transcript,
@ -211,8 +210,8 @@ fn bench_prod_check() -> Result<(), PolyIOPErrors> {
let mut rng = test_rng();
for nv in 4..20 {
let srs = Kzg::gen_srs_for_testing(&mut rng, nv + 1)?;
let (pcs_param, _) = Kzg::trim(&srs, nv + 1, Some(nv + 1))?;
let srs = KZG::gen_srs_for_testing(&mut rng, nv + 1)?;
let (pcs_param, _) = KZG::trim(&srs, nv + 1, Some(nv + 1))?;
let repetition = if nv < 10 {
100
@ -230,10 +229,10 @@ fn bench_prod_check() -> Result<(), PolyIOPErrors> {
let proof = {
let start = Instant::now();
let mut transcript = <PolyIOP<Fr> as ProductCheck<Bls12_381, Kzg>>::init_transcript();
let mut transcript = <PolyIOP<Fr> as ProductCheck<Bls12_381, KZG>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let (proof, _prod_x) = <PolyIOP<Fr> as ProductCheck<Bls12_381, Kzg>>::prove(
let (proof, _prod_x) = <PolyIOP<Fr> as ProductCheck<Bls12_381, KZG>>::prove(
&pcs_param,
&f,
&g,
@ -256,9 +255,9 @@ fn bench_prod_check() -> Result<(), PolyIOPErrors> {
};
let start = Instant::now();
let mut transcript = <PolyIOP<Fr> as ProductCheck<Bls12_381, Kzg>>::init_transcript();
let mut transcript = <PolyIOP<Fr> as ProductCheck<Bls12_381, KZG>>::init_transcript();
transcript.append_message(b"testing", b"initializing transcript for testing")?;
let _perm_check_sum_claim = <PolyIOP<Fr> as ProductCheck<Bls12_381, Kzg>>::verify(
let _perm_check_sum_claim = <PolyIOP<Fr> as ProductCheck<Bls12_381, KZG>>::verify(
&proof,
&poly_info,
&mut transcript,

+ 4
- 3
poly-iop/readme.md

@ -3,6 +3,7 @@ Poly IOP
Implements the following protocols
- [x] sum checks
- [x] zero checks
- [x] permutation checks
- sum checks
- zero checks
- product checks
- permutation checks

+ 7
- 7
poly-iop/src/errors.rs

@ -3,8 +3,8 @@
use arithmetic::ArithErrors;
use ark_std::string::String;
use displaydoc::Display;
use jf_primitives::pcs::errors::PCSError;
use transcript::TranscriptErrors;
use pcs::prelude::PCSError;
use transcript::TranscriptError;
/// A `enum` specifying the possible failure modes of the PolyIOP.
#[derive(Display, Debug)]
@ -24,11 +24,11 @@ pub enum PolyIOPErrors {
/// An error during (de)serialization: {0}
SerializationErrors(ark_serialize::SerializationError),
/// Transcript Error: {0}
TranscriptErrors(TranscriptErrors),
TranscriptErrors(TranscriptError),
/// Arithmetic Error: {0}
ArithmeticErrors(ArithErrors),
/// PCS error {0}
PCSError(PCSError),
PCSErrors(PCSError),
}
impl From<ark_serialize::SerializationError> for PolyIOPErrors {
@ -37,8 +37,8 @@ impl From for PolyIOPErrors {
}
}
impl From<TranscriptErrors> for PolyIOPErrors {
fn from(e: TranscriptErrors) -> Self {
impl From<TranscriptError> for PolyIOPErrors {
fn from(e: TranscriptError) -> Self {
Self::TranscriptErrors(e)
}
}
@ -51,6 +51,6 @@ impl From for PolyIOPErrors {
impl From<PCSError> for PolyIOPErrors {
fn from(e: PCSError) -> Self {
Self::PCSError(e)
Self::PCSErrors(e)
}
}

+ 13
- 17
poly-iop/src/perm_check/mod.rs

@ -5,7 +5,7 @@ use crate::{errors::PolyIOPErrors, prelude::ProductCheck, PolyIOP};
use ark_ec::PairingEngine;
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer};
use jf_primitives::pcs::PolynomialCommitmentScheme;
use pcs::PolynomialCommitmentScheme;
use std::rc::Rc;
use transcript::IOPTranscript;
@ -153,20 +153,16 @@ where
#[cfg(test)]
mod test {
use super::PermutationCheck;
use crate::{
errors::PolyIOPErrors,
prelude::{identity_permutation_mle, random_permutation_mle},
PolyIOP,
};
use arithmetic::VPAuxInfo;
use crate::{errors::PolyIOPErrors, PolyIOP};
use arithmetic::{evaluate_opt, identity_permutation_mle, random_permutation_mle, VPAuxInfo};
use ark_bls12_381::Bls12_381;
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::test_rng;
use jf_primitives::pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme};
use pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme};
use std::{marker::PhantomData, rc::Rc};
type Kzg = MultilinearKzgPCS<Bls12_381>;
type KZG = MultilinearKzgPCS<Bls12_381>;
fn test_permutation_check_helper<E, PCS>(
pcs_param: &PCS::ProverParam,
@ -206,10 +202,10 @@ mod test {
)?;
// check product subclaim
if prod_x
.evaluate(&perm_check_sub_claim.product_check_sub_claim.final_query.0)
.unwrap()
!= perm_check_sub_claim.product_check_sub_claim.final_query.1
if evaluate_opt(
&prod_x,
&perm_check_sub_claim.product_check_sub_claim.final_query.0,
) != perm_check_sub_claim.product_check_sub_claim.final_query.1
{
return Err(PolyIOPErrors::InvalidVerifier("wrong subclaim".to_string()));
};
@ -228,7 +224,7 @@ mod test {
let w = Rc::new(DenseMultilinearExtension::rand(nv, &mut rng));
// s_perm is the identity map
let s_perm = identity_permutation_mle(nv);
test_permutation_check_helper::<Bls12_381, Kzg>(&pcs_param, &w, &w, &s_perm)?;
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &w, &w, &s_perm)?;
}
{
@ -238,9 +234,9 @@ mod test {
let s_perm = random_permutation_mle(nv, &mut rng);
if nv == 1 {
test_permutation_check_helper::<Bls12_381, Kzg>(&pcs_param, &w, &w, &s_perm)?;
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &w, &w, &s_perm)?;
} else {
assert!(test_permutation_check_helper::<Bls12_381, Kzg>(
assert!(test_permutation_check_helper::<Bls12_381, KZG>(
&pcs_param, &w, &w, &s_perm
)
.is_err());
@ -255,7 +251,7 @@ mod test {
let s_perm = identity_permutation_mle(nv);
assert!(
test_permutation_check_helper::<Bls12_381, Kzg>(&pcs_param, &f, &g, &s_perm)
test_permutation_check_helper::<Bls12_381, KZG>(&pcs_param, &f, &g, &s_perm)
.is_err()
);
}

+ 2
- 28
poly-iop/src/perm_check/util.rs

@ -1,9 +1,10 @@
//! This module implements useful functions for the permutation check protocol.
use crate::errors::PolyIOPErrors;
use arithmetic::identity_permutation_mle;
use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, rand::RngCore, start_timer};
use ark_std::{end_timer, start_timer};
use std::rc::Rc;
/// Returns the evaluations of two MLEs:
@ -58,30 +59,3 @@ pub(super) fn computer_num_and_denom(
end_timer!(start);
Ok((numerator, denominator))
}
/// An MLE that represent an identity permutation: `f(index) \mapto index`
pub fn identity_permutation_mle<F: PrimeField>(
num_vars: usize,
) -> Rc<DenseMultilinearExtension<F>> {
let s_id_vec = (0..1u64 << num_vars).map(F::from).collect();
Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, s_id_vec,
))
}
/// An MLE that represent a random permutation
pub fn random_permutation_mle<F: PrimeField, R: RngCore>(
num_vars: usize,
rng: &mut R,
) -> Rc<DenseMultilinearExtension<F>> {
let len = 1u64 << num_vars;
let mut s_id_vec: Vec<F> = (0..len).map(F::from).collect();
let mut s_perm_vec = vec![];
for _ in 0..len {
let index = rng.next_u64() as usize % s_id_vec.len();
s_perm_vec.push(s_id_vec.remove(index));
}
Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, s_perm_vec,
))
}

+ 2
- 10
poly-iop/src/prelude.rs

@ -1,12 +1,4 @@
pub use crate::{
errors::PolyIOPErrors,
perm_check::{
util::{identity_permutation_mle, random_permutation_mle},
PermutationCheck,
},
prod_check::ProductCheck,
sum_check::SumCheck,
utils::*,
zero_check::ZeroCheck,
PolyIOP,
errors::PolyIOPErrors, perm_check::PermutationCheck, prod_check::ProductCheck,
sum_check::SumCheck, utils::*, zero_check::ZeroCheck, PolyIOP,
};

+ 2
- 2
poly-iop/src/prod_check/mod.rs

@ -11,7 +11,7 @@ use ark_ec::PairingEngine;
use ark_ff::{One, PrimeField, Zero};
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer};
use jf_primitives::pcs::prelude::PolynomialCommitmentScheme;
use pcs::PolynomialCommitmentScheme;
use std::rc::Rc;
use transcript::IOPTranscript;
@ -207,7 +207,7 @@ mod test {
use ark_ec::PairingEngine;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::test_rng;
use jf_primitives::pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme};
use pcs::{prelude::MultilinearKzgPCS, PolynomialCommitmentScheme};
use std::{marker::PhantomData, rc::Rc};
// f and g are guaranteed to have the same product

+ 9
- 8
poly-iop/src/prod_check/util.rs

@ -1,12 +1,11 @@
//! This module implements useful functions for the product check protocol.
use crate::{
errors::PolyIOPErrors, structs::IOPProof, utils::get_index, zero_check::ZeroCheck, PolyIOP,
};
use arithmetic::VirtualPolynomial;
use crate::{errors::PolyIOPErrors, structs::IOPProof, zero_check::ZeroCheck, PolyIOP};
use arithmetic::{get_index, VirtualPolynomial};
use ark_ff::PrimeField;
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer};
use rayon::prelude::{IntoParallelRefIterator, ParallelIterator};
use std::rc::Rc;
use transcript::IOPTranscript;
@ -191,10 +190,12 @@ fn compute_prod_0(
) -> Result<Vec<F>, PolyIOPErrors> {
let start = start_timer!(|| "compute prod(0,x)");
let mut prod_0x_evals = vec![];
for (&fi, &gi) in fx.iter().zip(gx.iter()) {
prod_0x_evals.push(fi / gi);
}
let input = fx
.iter()
.zip(gx.iter())
.map(|(&fi, &gi)| (fi, gi))
.collect::<Vec<_>>();
let prod_0x_evals = input.par_iter().map(|(x, y)| *x / *y).collect::<Vec<_>>();
end_timer!(start);
Ok(prod_0x_evals)

+ 44
- 28
poly-iop/src/sum_check/prover.rs

@ -5,14 +5,15 @@ use crate::{
errors::PolyIOPErrors,
structs::{IOPProverMessage, IOPProverState},
};
use arithmetic::VirtualPolynomial;
use arithmetic::{fix_variables, VirtualPolynomial};
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_poly::DenseMultilinearExtension;
use ark_std::{end_timer, start_timer, vec::Vec};
use rayon::prelude::IntoParallelIterator;
use std::rc::Rc;
#[cfg(feature = "parallel")]
use rayon::iter::{IndexedParallelIterator, IntoParallelRefMutIterator, ParallelIterator};
use rayon::iter::{IntoParallelRefMutIterator, ParallelIterator};
impl<F: PrimeField> SumCheckProver<F> for IOPProverState<F> {
type VirtualPolynomial = VirtualPolynomial<F>;
@ -44,8 +45,9 @@ impl SumCheckProver for IOPProverState {
&mut self,
challenge: &Option<F>,
) -> Result<Self::ProverMessage, PolyIOPErrors> {
let start =
start_timer!(|| format!("sum check prove {}-th round and update state", self.round));
// let start =
// start_timer!(|| format!("sum check prove {}-th round and update state",
// self.round));
if self.round >= self.poly.aux_info.num_variables {
return Err(PolyIOPErrors::InvalidProver(
@ -53,7 +55,7 @@ impl SumCheckProver for IOPProverState {
));
}
let fix_argument = start_timer!(|| "fix argument");
// let fix_argument = start_timer!(|| "fix argument");
// Step 1:
// fix argument and evaluate f(x) over x_m = r; where r is the challenge
@ -85,18 +87,18 @@ impl SumCheckProver for IOPProverState {
#[cfg(feature = "parallel")]
flattened_ml_extensions
.par_iter_mut()
.for_each(|mle| *mle = mle.fix_variables(&[r]));
.for_each(|mle| *mle = fix_variables(mle, &[r]));
#[cfg(not(feature = "parallel"))]
flattened_ml_extensions
.iter_mut()
.for_each(|mle| *mle = mle.fix_variables(&[r]));
.for_each(|mle| *mle = fix_variables(mle, &[r]));
} else if self.round > 0 {
return Err(PolyIOPErrors::InvalidProver(
"verifier message is empty".to_string(),
));
}
end_timer!(fix_argument);
// end_timer!(fix_argument);
self.round += 1;
@ -104,29 +106,44 @@ impl SumCheckProver for IOPProverState {
let mut products_sum = Vec::with_capacity(self.poly.aux_info.max_degree + 1);
products_sum.resize(self.poly.aux_info.max_degree + 1, F::zero());
let compute_sum = start_timer!(|| "compute sum");
// let compute_sum = start_timer!(|| "compute sum");
// Step 2: generate sum for the partial evaluated polynomial:
// f(r_1, ... r_m,, x_{m+1}... x_n)
#[cfg(feature = "parallel")]
products_sum.par_iter_mut().enumerate().for_each(|(t, e)| {
for b in 0..1 << (self.poly.aux_info.num_variables - self.round) {
// evaluate P_round(t)
for (coefficient, products) in products_list.iter() {
let num_mles = products.len();
let mut product = *coefficient;
for &f in products.iter().take(num_mles) {
let table = &flattened_ml_extensions[f]; // f's range is checked in init
product *= table[b << 1] * (F::one() - F::from(t as u64))
+ table[(b << 1) + 1] * F::from(t as u64);
}
*e += product;
}
for (t, e) in products_sum.iter_mut().enumerate() {
let t = F::from(t as u64);
let one_minus_t = F::one() - t;
let products = (0..1 << (self.poly.aux_info.num_variables - self.round))
.into_par_iter()
.map(|b| {
// evaluate P_round(t)
let mut tmp = F::zero();
products_list.iter().for_each(|(coefficient, products)| {
let num_mles = products.len();
let mut product = *coefficient;
for &f in products.iter().take(num_mles) {
let table = &flattened_ml_extensions[f]; // f's range is checked in init
product *= table[b << 1] * one_minus_t + table[(b << 1) + 1] * t;
}
tmp += product;
});
tmp
})
.collect::<Vec<F>>();
for i in products.iter() {
*e += i
}
});
}
#[cfg(not(feature = "parallel"))]
products_sum.iter_mut().enumerate().for_each(|(t, e)| {
let t = F::from(t as u64);
let one_minus_t = F::one() - t;
for b in 0..1 << (self.poly.aux_info.num_variables - self.round) {
// evaluate P_round(t)
for (coefficient, products) in products_list.iter() {
@ -134,8 +151,7 @@ impl SumCheckProver for IOPProverState {
let mut product = *coefficient;
for &f in products.iter().take(num_mles) {
let table = &flattened_ml_extensions[f]; // f's range is checked in init
product *= table[b << 1] * (F::one() - F::from(t as u64))
+ table[(b << 1) + 1] * F::from(t as u64);
product *= table[b << 1] * one_minus_t + table[(b << 1) + 1] * t;
}
*e += product;
}
@ -148,8 +164,8 @@ impl SumCheckProver for IOPProverState {
.map(|x| Rc::new(x.clone()))
.collect();
end_timer!(compute_sum);
end_timer!(start);
// end_timer!(compute_sum);
// end_timer!(start);
Ok(IOPProverMessage {
evaluations: products_sum,
})

+ 1
- 74
poly-iop/src/utils.rs

@ -11,53 +11,11 @@ macro_rules! to_bytes {
}};
}
/// Decompose an integer into a binary vector in little endian.
#[allow(dead_code)]
pub fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
/// Project a little endian binary vector into an integer.
#[allow(dead_code)]
pub(crate) fn project(input: &[bool]) -> u64 {
let mut res = 0;
for &e in input.iter().rev() {
res <<= 1;
res += e as u64;
}
res
}
// Input index
// - `i := (i_0, ...i_{n-1})`,
// - `num_vars := n`
// return three elements:
// - `x0 := (i_1, ..., i_{n-1}, 0)`
// - `x1 := (i_1, ..., i_{n-1}, 1)`
// - `sign := i_0`
#[inline]
pub(crate) fn get_index(i: usize, num_vars: usize) -> (usize, usize, bool) {
let bit_sequence = bit_decompose(i as u64, num_vars);
// the last bit comes first here because of LE encoding
let x0 = project(&[[false].as_ref(), bit_sequence[..num_vars - 1].as_ref()].concat()) as usize;
let x1 = project(&[[true].as_ref(), bit_sequence[..num_vars - 1].as_ref()].concat()) as usize;
(x0, x1, bit_sequence[num_vars - 1])
}
#[cfg(test)]
mod test {
use super::{bit_decompose, get_index, project};
use ark_bls12_381::Fr;
use ark_serialize::CanonicalSerialize;
use ark_std::{rand::RngCore, test_rng, One};
use ark_std::One;
#[test]
fn test_to_bytes() {
@ -67,35 +25,4 @@ mod test {
f1.serialize(&mut bytes).unwrap();
assert_eq!(bytes, to_bytes!(&f1).unwrap());
}
#[test]
fn test_decomposition() {
let mut rng = test_rng();
for _ in 0..100 {
let t = rng.next_u64();
let b = bit_decompose(t, 64);
let r = project(&b);
assert_eq!(t, r)
}
}
#[test]
fn test_get_index() {
let a = 0b1010;
let (x0, x1, sign) = get_index(a, 4);
assert_eq!(x0, 0b0100);
assert_eq!(x1, 0b0101);
assert!(sign);
let (x0, x1, sign) = get_index(a, 5);
assert_eq!(x0, 0b10100);
assert_eq!(x1, 0b10101);
assert!(!sign);
let a = 0b1111;
let (x0, x1, sign) = get_index(a, 4);
assert_eq!(x0, 0b1110);
assert_eq!(x1, 0b1111);
assert!(sign);
}
}

+ 2
- 2
transcript/src/errors.rs

@ -5,14 +5,14 @@ use displaydoc::Display;
/// A `enum` specifying the possible failure modes of the Transcript.
#[derive(Display, Debug)]
pub enum TranscriptErrors {
pub enum TranscriptError {
/// Invalid Transcript: {0}
InvalidTranscript(String),
/// An error during (de)serialization: {0}
SerializationError(ark_serialize::SerializationError),
}
impl From<ark_serialize::SerializationError> for TranscriptErrors {
impl From<ark_serialize::SerializationError> for TranscriptError {
fn from(e: ark_serialize::SerializationError) -> Self {
Self::SerializationError(e)
}

+ 8
- 11
transcript/src/lib.rs

@ -4,7 +4,7 @@
//! TODO(ZZ): decide which APIs need to be public.
mod errors;
pub use errors::TranscriptErrors;
pub use errors::TranscriptError;
use ark_ff::PrimeField;
use ark_serialize::CanonicalSerialize;
@ -44,7 +44,7 @@ impl IOPTranscript {
&mut self,
label: &'static [u8],
msg: &[u8],
) -> Result<(), TranscriptErrors> {
) -> Result<(), TranscriptError> {
self.transcript.append_message(label, msg);
self.is_empty = false;
Ok(())
@ -55,7 +55,7 @@ impl IOPTranscript {
&mut self,
label: &'static [u8],
field_elem: &F,
) -> Result<(), TranscriptErrors> {
) -> Result<(), TranscriptError> {
self.append_message(label, &to_bytes!(field_elem)?)
}
@ -64,7 +64,7 @@ impl IOPTranscript {
&mut self,
label: &'static [u8],
group_elem: &S,
) -> Result<(), TranscriptErrors> {
) -> Result<(), TranscriptError> {
self.append_message(label, &to_bytes!(group_elem)?)
}
@ -73,13 +73,10 @@ impl IOPTranscript {
//
// The output field element is statistical uniform as long
// as the field has a size less than 2^384.
pub fn get_and_append_challenge(
&mut self,
label: &'static [u8],
) -> Result<F, TranscriptErrors> {
pub fn get_and_append_challenge(&mut self, label: &'static [u8]) -> Result<F, TranscriptError> {
// we need to reject when transcript is empty
if self.is_empty {
return Err(TranscriptErrors::InvalidTranscript(
return Err(TranscriptError::InvalidTranscript(
"transcript is empty".to_string(),
));
}
@ -100,10 +97,10 @@ impl IOPTranscript {
&mut self,
label: &'static [u8],
len: usize,
) -> Result<Vec<F>, TranscriptErrors> {
) -> Result<Vec<F>, TranscriptError> {
// we need to reject when transcript is empty
if self.is_empty {
return Err(TranscriptErrors::InvalidTranscript(
return Err(TranscriptError::InvalidTranscript(
"transcript is empty".to_string(),
));
}

+ 13
- 0
util/Cargo.toml

@ -0,0 +1,13 @@
[package]
name = "util"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
rayon = { version = "1.5.0", optional = true }
[features]
default = []
parallel = [ "rayon" ]

+ 29
- 0
util/src/lib.rs

@ -0,0 +1,29 @@
// Copyright (c) 2022 Espresso Systems (espressosys.com)
// This file is part of the Jellyfish library.
// You should have received a copy of the MIT License
// along with the Jellyfish library. If not, see <https://mit-license.org/>.
//! Utilities for parallel code.
/// this function helps with slice iterator creation that optionally use
/// `par_iter()` when feature flag `parallel` is on.
///
/// # Usage
/// let v = [1, 2, 3, 4, 5];
/// let sum = parallelizable_slice_iter(&v).sum();
///
/// // the above code is a shorthand for (thus equivalent to)
/// #[cfg(feature = "parallel")]
/// let sum = v.par_iter().sum();
/// #[cfg(not(feature = "parallel"))]
/// let sum = v.iter().sum();
#[cfg(feature = "parallel")]
pub fn parallelizable_slice_iter<T: Sync>(data: &[T]) -> rayon::slice::Iter<T> {
use rayon::iter::IntoParallelIterator;
data.into_par_iter()
}
#[cfg(not(feature = "parallel"))]
pub fn parallelizable_slice_iter<T>(data: &[T]) -> core::slice::Iter<T> {
data.iter()
}

Loading…
Cancel
Save