enabling batch opening and mock tests (#80)

- add mock circuits
- add vanilla and jellyfish plonk gates
- performance tuning
This commit is contained in:
zhenfei
2022-09-27 14:51:30 -04:00
committed by GitHub
parent 3160ef17f2
commit baaa06b07b
51 changed files with 5637 additions and 1388 deletions

View File

@@ -19,6 +19,7 @@ rayon = { version = "1.5.2", default-features = false, optional = true }
[dev-dependencies]
ark-ec = { version = "^0.3.0", default-features = false }
criterion = "0.3.0"
[features]
# default = [ "parallel", "print-trace" ]
@@ -31,4 +32,10 @@ parallel = [
]
print-trace = [
"ark-std/print-trace"
]
]
[[bench]]
name = "mle_eval"
path = "benches/bench.rs"
harness = false

View File

@@ -0,0 +1,37 @@
#[macro_use]
extern crate criterion;
use arithmetic::fix_variables;
use ark_bls12_381::Fr;
use ark_ff::Field;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_std::{ops::Range, test_rng};
use criterion::{black_box, BenchmarkId, Criterion};
const NUM_VARIABLES_RANGE: Range<usize> = 10..21;
fn evaluation_op_bench<F: Field>(c: &mut Criterion) {
let mut rng = test_rng();
let mut group = c.benchmark_group("Evaluate");
for nv in NUM_VARIABLES_RANGE {
group.bench_with_input(BenchmarkId::new("evaluate native", nv), &nv, |b, &nv| {
let poly = DenseMultilinearExtension::<F>::rand(nv, &mut rng);
let point: Vec<_> = (0..nv).map(|_| F::rand(&mut rng)).collect();
b.iter(|| black_box(poly.evaluate(&point).unwrap()))
});
group.bench_with_input(BenchmarkId::new("evaluate optimized", nv), &nv, |b, &nv| {
let poly = DenseMultilinearExtension::<F>::rand(nv, &mut rng);
let point: Vec<_> = (0..nv).map(|_| F::rand(&mut rng)).collect();
b.iter(|| black_box(fix_variables(&poly, &point)))
});
}
group.finish();
}
fn bench_bls_381(c: &mut Criterion) {
evaluation_op_bench::<Fr>(c);
}
criterion_group!(benches, bench_bls_381);
criterion_main!(benches);

View File

@@ -1,7 +1,15 @@
mod errors;
mod multilinear_polynomial;
mod univariate_polynomial;
mod util;
mod virtual_polynomial;
pub use errors::ArithErrors;
pub use multilinear_polynomial::{random_zero_mle_list, DenseMultilinearExtension};
pub use multilinear_polynomial::{
evaluate_no_par, evaluate_opt, fix_first_variable, fix_variables, identity_permutation_mle,
merge_polynomials, random_mle_list, random_permutation_mle, random_zero_mle_list,
DenseMultilinearExtension,
};
pub use univariate_polynomial::{build_l, get_uni_domain};
pub use util::{bit_decompose, gen_eval_point, get_batched_nv, get_index};
pub use virtual_polynomial::{build_eq_x_r, VPAuxInfo, VirtualPolynomial};

View File

@@ -1,9 +1,49 @@
use ark_ff::PrimeField;
use crate::{util::get_batched_nv, ArithErrors};
use ark_ff::{Field, PrimeField};
use ark_poly::MultilinearExtension;
use ark_std::{end_timer, rand::RngCore, start_timer};
#[cfg(feature = "parallel")]
use rayon::prelude::{IndexedParallelIterator, IntoParallelRefMutIterator, ParallelIterator};
use std::rc::Rc;
pub use ark_poly::DenseMultilinearExtension;
/// Sample a random list of multilinear polynomials.
/// Returns
/// - the list of polynomials,
/// - its sum of polynomial evaluations over the boolean hypercube.
pub fn random_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> (Vec<Rc<DenseMultilinearExtension<F>>>, F) {
let start = start_timer!(|| "sample random mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
let mut sum = F::zero();
for _ in 0..(1 << nv) {
let mut product = F::one();
for e in multiplicands.iter_mut() {
let val = F::rand(rng);
e.push(val);
product *= val;
}
sum += product;
}
let list = multiplicands
.into_iter()
.map(|x| Rc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
(list, sum)
}
// Build a randomize list of mle-s whose sum is zero.
pub fn random_zero_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
@@ -31,3 +71,142 @@ pub fn random_zero_mle_list<F: PrimeField, R: RngCore>(
end_timer!(start);
list
}
/// An MLE that represent an identity permutation: `f(index) \mapto index`
pub fn identity_permutation_mle<F: PrimeField>(
num_vars: usize,
) -> Rc<DenseMultilinearExtension<F>> {
let s_id_vec = (0..1u64 << num_vars).map(F::from).collect();
Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, s_id_vec,
))
}
/// An MLE that represent a random permutation
pub fn random_permutation_mle<F: PrimeField, R: RngCore>(
num_vars: usize,
rng: &mut R,
) -> Rc<DenseMultilinearExtension<F>> {
let len = 1u64 << num_vars;
let mut s_id_vec: Vec<F> = (0..len).map(F::from).collect();
let mut s_perm_vec = vec![];
for _ in 0..len {
let index = rng.next_u64() as usize % s_id_vec.len();
s_perm_vec.push(s_id_vec.remove(index));
}
Rc::new(DenseMultilinearExtension::from_evaluations_vec(
num_vars, s_perm_vec,
))
}
pub fn evaluate_opt<F: Field>(poly: &DenseMultilinearExtension<F>, point: &[F]) -> F {
assert_eq!(poly.num_vars, point.len());
fix_variables(poly, point).evaluations[0]
}
pub fn fix_variables<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &[F],
) -> DenseMultilinearExtension<F> {
assert!(
partial_point.len() <= poly.num_vars,
"invalid size of partial point"
);
let nv = poly.num_vars;
let mut poly = poly.evaluations.to_vec();
let dim = partial_point.len();
// evaluate single variable of partial point from left to right
for (i, point) in partial_point.iter().enumerate().take(dim) {
poly = fix_one_variable_helper(&poly, nv - i, point);
}
DenseMultilinearExtension::<F>::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
}
pub fn fix_first_variable<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &F,
) -> DenseMultilinearExtension<F> {
assert!(poly.num_vars != 0, "invalid size of partial point");
let nv = poly.num_vars;
let res = fix_one_variable_helper(&poly.evaluations, nv, partial_point);
DenseMultilinearExtension::<F>::from_evaluations_slice(nv - 1, &res)
}
fn fix_one_variable_helper<F: Field>(data: &[F], nv: usize, point: &F) -> Vec<F> {
let mut res = vec![F::zero(); 1 << (nv - 1)];
let one_minus_p = F::one() - point;
// evaluate single variable of partial point from left to right
#[cfg(not(feature = "parallel"))]
for b in 0..(1 << (nv - 1)) {
res[b] = data[b << 1] * one_minus_p + data[(b << 1) + 1] * point;
}
#[cfg(feature = "parallel")]
if nv >= 13 {
// on my computer we parallelization doesn't help till nv >= 13
res.par_iter_mut().enumerate().for_each(|(i, x)| {
*x = data[i << 1] * one_minus_p + data[(i << 1) + 1] * point;
});
} else {
for b in 0..(1 << (nv - 1)) {
res[b] = data[b << 1] * one_minus_p + data[(b << 1) + 1] * point;
}
}
res
}
pub fn evaluate_no_par<F: Field>(poly: &DenseMultilinearExtension<F>, point: &[F]) -> F {
assert_eq!(poly.num_vars, point.len());
fix_variables_no_par(poly, point).evaluations[0]
}
fn fix_variables_no_par<F: Field>(
poly: &DenseMultilinearExtension<F>,
partial_point: &[F],
) -> DenseMultilinearExtension<F> {
assert!(
partial_point.len() <= poly.num_vars,
"invalid size of partial point"
);
let nv = poly.num_vars;
let mut poly = poly.evaluations.to_vec();
let dim = partial_point.len();
// evaluate single variable of partial point from left to right
for i in 1..dim + 1 {
let r = partial_point[i - 1];
let one_minus_r = F::one() - r;
for b in 0..(1 << (nv - i)) {
poly[b] = poly[b << 1] * one_minus_r + poly[(b << 1) + 1] * r;
}
}
DenseMultilinearExtension::from_evaluations_slice(nv - dim, &poly[..(1 << (nv - dim))])
}
/// merge a set of polynomials. Returns an error if the
/// polynomials do not share a same number of nvs.
pub fn merge_polynomials<F: PrimeField>(
polynomials: &[Rc<DenseMultilinearExtension<F>>],
) -> Result<Rc<DenseMultilinearExtension<F>>, ArithErrors> {
let nv = polynomials[0].num_vars();
for poly in polynomials.iter() {
if nv != poly.num_vars() {
return Err(ArithErrors::InvalidParameters(
"num_vars do not match for polynomials".to_string(),
));
}
}
let merged_nv = get_batched_nv(nv, polynomials.len());
let mut scalars = vec![];
for poly in polynomials.iter() {
scalars.extend_from_slice(poly.to_evaluations().as_slice());
}
scalars.extend_from_slice(vec![F::zero(); (1 << merged_nv) - scalars.len()].as_ref());
Ok(Rc::new(DenseMultilinearExtension::from_evaluations_vec(
merged_nv, scalars,
)))
}

View File

@@ -0,0 +1,340 @@
// TODO: remove
#![allow(dead_code)]
use crate::{bit_decompose, ArithErrors};
use ark_ff::PrimeField;
use ark_poly::{
univariate::DensePolynomial, EvaluationDomain, Evaluations, Radix2EvaluationDomain,
};
use ark_std::log2;
/// Given a list of points, build `l(points)` which is a list of univariate
/// polynomials that goes through the points; extend the dimension of the points
/// by `log(points.len())` if `with_suffix` is set.
pub fn build_l<F: PrimeField>(
points: &[Vec<F>],
domain: &Radix2EvaluationDomain<F>,
with_suffix: bool,
) -> Result<Vec<DensePolynomial<F>>, ArithErrors> {
let mut uni_polys = Vec::new();
if with_suffix {
// 1.1 build the indexes and the univariate polys that go through the indexes
let prefix_len = log2(points.len()) as usize;
let indexes: Vec<Vec<bool>> = (0..points.len())
.map(|x| bit_decompose(x as u64, prefix_len))
.collect();
for i in 0..prefix_len {
let eval: Vec<F> = indexes
.iter()
.map(|x| F::from(x[prefix_len - i - 1]))
.collect();
uni_polys.push(Evaluations::from_vec_and_domain(eval, *domain).interpolate());
}
}
// 1.2 build the actual univariate polys that go through the points
uni_polys.extend_from_slice(build_l_internal(points, domain)?.as_slice());
Ok(uni_polys)
}
/// Given a list of points, build `l(points)` which is a list of univariate
/// polynomials that goes through the points.
pub(crate) fn build_l_internal<F: PrimeField>(
points: &[Vec<F>],
domain: &Radix2EvaluationDomain<F>,
) -> Result<Vec<DensePolynomial<F>>, ArithErrors> {
let mut uni_polys = Vec::new();
let num_var = points[0].len();
// build the actual univariate polys that go through the points
for i in 0..num_var {
let mut eval: Vec<F> = points.iter().map(|x| x[i]).collect();
eval.extend_from_slice(vec![F::zero(); domain.size as usize - eval.len()].as_slice());
uni_polys.push(Evaluations::from_vec_and_domain(eval, *domain).interpolate())
}
Ok(uni_polys)
}
/// get the domain for the univariate polynomial
#[inline]
pub fn get_uni_domain<F: PrimeField>(
uni_poly_degree: usize,
) -> Result<Radix2EvaluationDomain<F>, ArithErrors> {
let domain = match Radix2EvaluationDomain::<F>::new(uni_poly_degree) {
Some(p) => p,
None => {
return Err(ArithErrors::InvalidParameters(
"failed to build radix 2 domain".to_string(),
))
},
};
Ok(domain)
}
#[cfg(test)]
mod test {
use super::*;
use ark_bls12_381::Fr;
use ark_ff::{field_new, One};
use ark_poly::UVPolynomial;
#[test]
fn test_build_l_with_suffix() -> Result<(), ArithErrors> {
test_build_l_with_suffix_helper::<Fr>()
}
fn test_build_l_with_suffix_helper<F: PrimeField>() -> Result<(), ArithErrors> {
// point 1 is [1, 2]
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let domain = get_uni_domain::<Fr>(2)?;
let l = build_l(&[point1.clone(), point2.clone()], &domain, true)?;
// roots: [1, -1]
// l0 = -1/2 * x + 1/2
// l1 = -x + 2
// l2 = -x + 3
let l0 = DensePolynomial::from_coefficients_vec(vec![
Fr::one() / Fr::from(2u64),
-Fr::one() / Fr::from(2u64),
]);
let l1 = DensePolynomial::from_coefficients_vec(vec![Fr::from(2u64), -Fr::one()]);
let l2 = DensePolynomial::from_coefficients_vec(vec![Fr::from(3u64), -Fr::one()]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
assert_eq!(l2, l[2], "l2 not equal");
}
{
let domain = get_uni_domain::<Fr>(3)?;
let l = build_l(&[point1, point2, point3], &domain, true)?;
// sage: q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
// sage: P.<x> = PolynomialRing(Zmod(q))
// sage: root1 = 1
// sage: root2 = 0x8D51CCCE760304D0EC030002760300000001000000000000
// sage: root3 = -1
// sage: root4 = -root2
// Arkwork's code is a bit wired: it also interpolate (root4, 0)
// which returns a degree 3 polynomial, instead of degree 2
// ========================
// l0: [0, 0, 1]
// ========================
// sage: points = [(root1, 0), (root2, 0), (root3, 1), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^3 +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385*x^2 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
let l0 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
]);
// ========================
// l1: [0, 1, 0]
// ========================
// sage: points = [(root1, 0), (root2, 1), (root3, 0), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 866286206518413079694067382671935694567563117191340490752*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296128*x^2 +
// 52435875175126190478581454301667552757996485117855702128036095582747240693761*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888385
let l1 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888385"
),
field_new!(
Fr,
"52435875175126190478581454301667552757996485117855702128036095582747240693761"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296128"
),
field_new!(
Fr,
"866286206518413079694067382671935694567563117191340490752"
),
]);
// ========================
// l2: [1, 3, 5]
// ========================
// sage: points = [(root1, 1), (root2, 3), (root3, 5), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 2598858619555239239082202148015807083702689351574021472255*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296129*x^2 +
// 52435875175126190476848881888630726598608350352511830738900969348364559712256*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888387
let l2 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888387"
),
field_new!(
Fr,
"52435875175126190476848881888630726598608350352511830738900969348364559712256"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296129"
),
field_new!(
Fr,
"2598858619555239239082202148015807083702689351574021472255"
),
]);
// ========================
// l3: [2, 4, 6]
// ========================
// sage: points = [(root1, 2), (root2, 4), (root3, 6), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 3465144826073652318776269530687742778270252468765361963007*x^3 +
// x^2 +
// 52435875175126190475982595682112313518914282969839895044333406231173219221504*x +
// 3
let l3 = DensePolynomial::from_coefficients_vec(vec![
Fr::from(3u64),
field_new!(
Fr,
"52435875175126190475982595682112313518914282969839895044333406231173219221504"
),
Fr::one(),
field_new!(
Fr,
"3465144826073652318776269530687742778270252468765361963007"
),
]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
assert_eq!(l2, l[2], "l2 not equal");
assert_eq!(l3, l[3], "l3 not equal");
}
Ok(())
}
#[test]
fn test_build_l() -> Result<(), ArithErrors> {
test_build_l_helper::<Fr>()
}
fn test_build_l_helper<F: PrimeField>() -> Result<(), ArithErrors> {
// point 1 is [1, 2]
let point1 = vec![Fr::from(1u64), Fr::from(2u64)];
// point 2 is [3, 4]
let point2 = vec![Fr::from(3u64), Fr::from(4u64)];
// point 3 is [5, 6]
let point3 = vec![Fr::from(5u64), Fr::from(6u64)];
{
let domain = get_uni_domain::<Fr>(2)?;
let l = build_l(&[point1.clone(), point2.clone()], &domain, false)?;
// roots: [1, -1]
// l0 = -x + 2
// l1 = -x + 3
let l0 = DensePolynomial::from_coefficients_vec(vec![Fr::from(2u64), -Fr::one()]);
let l1 = DensePolynomial::from_coefficients_vec(vec![Fr::from(3u64), -Fr::one()]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
}
{
let domain = get_uni_domain::<Fr>(3)?;
let l = build_l(&[point1, point2, point3], &domain, false)?;
// sage: q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
// sage: P.<x> = PolynomialRing(Zmod(q))
// sage: root1 = 1
// sage: root2 = 0x8D51CCCE760304D0EC030002760300000001000000000000
// sage: root3 = -1
// sage: root4 = -root2
// Arkwork's code is a bit wired: it also interpolate (root4, 0)
// which returns a degree 3 polynomial, instead of degree 2
// ========================
// l0: [1, 3, 5]
// ========================
// sage: points = [(root1, 1), (root2, 3), (root3, 5), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 2598858619555239239082202148015807083702689351574021472255*x^3 +
// 13108968793781547619861935127046491459422638125131909455650914674984645296129*x^2 +
// 52435875175126190476848881888630726598608350352511830738900969348364559712256*x +
// 39326906381344642859585805381139474378267914375395728366952744024953935888387
let l0 = DensePolynomial::from_coefficients_vec(vec![
field_new!(
Fr,
"39326906381344642859585805381139474378267914375395728366952744024953935888387"
),
field_new!(
Fr,
"52435875175126190476848881888630726598608350352511830738900969348364559712256"
),
field_new!(
Fr,
"13108968793781547619861935127046491459422638125131909455650914674984645296129"
),
field_new!(
Fr,
"2598858619555239239082202148015807083702689351574021472255"
),
]);
// ========================
// l1: [2, 4, 6]
// ========================
// sage: points = [(root1, 2), (root2, 4), (root3, 6), (root4, 0)]
// sage: P.lagrange_polynomial(points)
// 3465144826073652318776269530687742778270252468765361963007*x^3 +
// x^2 +
// 52435875175126190475982595682112313518914282969839895044333406231173219221504*x +
// 3
let l1 = DensePolynomial::from_coefficients_vec(vec![
Fr::from(3u64),
field_new!(
Fr,
"52435875175126190475982595682112313518914282969839895044333406231173219221504"
),
Fr::one(),
field_new!(
Fr,
"3465144826073652318776269530687742778270252468765361963007"
),
]);
assert_eq!(l0, l[0], "l0 not equal");
assert_eq!(l1, l[1], "l1 not equal");
}
Ok(())
}
}

96
arithmetic/src/util.rs Normal file
View File

@@ -0,0 +1,96 @@
use ark_ff::PrimeField;
use ark_std::log2;
/// Decompose an integer into a binary vector in little endian.
pub fn bit_decompose(input: u64, num_var: usize) -> Vec<bool> {
let mut res = Vec::with_capacity(num_var);
let mut i = input;
for _ in 0..num_var {
res.push(i & 1 == 1);
i >>= 1;
}
res
}
/// given the evaluation input `point` of the `index`-th polynomial,
/// obtain the evaluation point in the merged polynomial
pub fn gen_eval_point<F: PrimeField>(index: usize, index_len: usize, point: &[F]) -> Vec<F> {
let index_vec: Vec<F> = bit_decompose(index as u64, index_len)
.into_iter()
.map(|x| F::from(x))
.collect();
[point, &index_vec].concat()
}
/// Return the number of variables that one need for an MLE to
/// batch the list of MLEs
#[inline]
pub fn get_batched_nv(num_var: usize, polynomials_len: usize) -> usize {
num_var + log2(polynomials_len) as usize
}
// Input index
// - `i := (i_0, ...i_{n-1})`,
// - `num_vars := n`
// return three elements:
// - `x0 := (i_1, ..., i_{n-1}, 0)`
// - `x1 := (i_1, ..., i_{n-1}, 1)`
// - `sign := i_0`
#[inline]
pub fn get_index(i: usize, num_vars: usize) -> (usize, usize, bool) {
let bit_sequence = bit_decompose(i as u64, num_vars);
// the last bit comes first here because of LE encoding
let x0 = project(&[[false].as_ref(), bit_sequence[..num_vars - 1].as_ref()].concat()) as usize;
let x1 = project(&[[true].as_ref(), bit_sequence[..num_vars - 1].as_ref()].concat()) as usize;
(x0, x1, bit_sequence[num_vars - 1])
}
/// Project a little endian binary vector into an integer.
#[inline]
pub(crate) fn project(input: &[bool]) -> u64 {
let mut res = 0;
for &e in input.iter().rev() {
res <<= 1;
res += e as u64;
}
res
}
#[cfg(test)]
mod test {
use super::{bit_decompose, get_index, project};
use ark_std::{rand::RngCore, test_rng};
#[test]
fn test_decomposition() {
let mut rng = test_rng();
for _ in 0..100 {
let t = rng.next_u64();
let b = bit_decompose(t, 64);
let r = project(&b);
assert_eq!(t, r)
}
}
#[test]
fn test_get_index() {
let a = 0b1010;
let (x0, x1, sign) = get_index(a, 4);
assert_eq!(x0, 0b0100);
assert_eq!(x1, 0b0101);
assert!(sign);
let (x0, x1, sign) = get_index(a, 5);
assert_eq!(x0, 0b10100);
assert_eq!(x1, 0b10101);
assert!(!sign);
let a = 0b1111;
let (x0, x1, sign) = get_index(a, 4);
assert_eq!(x0, 0b1110);
assert_eq!(x1, 0b1111);
assert!(sign);
}
}

View File

@@ -1,7 +1,7 @@
//! This module defines our main mathematical object `VirtualPolynomial`; and
//! various functions associated with it.
use crate::{errors::ArithErrors, multilinear_polynomial::random_zero_mle_list};
use crate::{errors::ArithErrors, multilinear_polynomial::random_zero_mle_list, random_mle_list};
use ark_ff::PrimeField;
use ark_poly::{DenseMultilinearExtension, MultilinearExtension};
use ark_serialize::{CanonicalSerialize, SerializationError, Write};
@@ -324,42 +324,6 @@ impl<F: PrimeField> VirtualPolynomial<F> {
}
}
/// Sample a random list of multilinear polynomials.
/// Returns
/// - the list of polynomials,
/// - its sum of polynomial evaluations over the boolean hypercube.
fn random_mle_list<F: PrimeField, R: RngCore>(
nv: usize,
degree: usize,
rng: &mut R,
) -> (Vec<Rc<DenseMultilinearExtension<F>>>, F) {
let start = start_timer!(|| "sample random mle list");
let mut multiplicands = Vec::with_capacity(degree);
for _ in 0..degree {
multiplicands.push(Vec::with_capacity(1 << nv))
}
let mut sum = F::zero();
for _ in 0..(1 << nv) {
let mut product = F::one();
for e in multiplicands.iter_mut() {
let val = F::rand(rng);
e.push(val);
product *= val;
}
sum += product;
}
let list = multiplicands
.into_iter()
.map(|x| Rc::new(DenseMultilinearExtension::from_evaluations_vec(nv, x)))
.collect();
end_timer!(start);
(list, sum)
}
// This function build the eq(x, r) polynomial for any given r.
//
// Evaluate