78 Commits

Author SHA1 Message Date
Bobbin Threadbare
18302d68e0 Merge pull request #154 from 0xPolygonMiden/next
Tracking PR for v0.6.0 release
2023-06-25 02:06:21 -07:00
Bobbin Threadbare
858f95d4a1 chore: update changelog 2023-06-25 01:54:34 -07:00
Bobbin Threadbare
b2d6866d41 refactor: rename Merkle store Node into StoreNode 2023-06-25 01:42:21 -07:00
Bobbin Threadbare
f52ac29a02 Merge pull request #162 from 0xPolygonMiden/frisitano-tx-executor
Introduce data access recording capabilities
2023-06-23 23:33:58 -07:00
Bobbin Threadbare
f08644e4df refactor: simplify recording MerkleStore structure 2023-06-23 23:19:12 -07:00
frisitano
679a30e02e feat: introduce recorder objects 2023-06-23 14:26:57 +01:00
Bobbin Threadbare
cede2e57da Merge pull request #161 from 0xPolygonMiden/bobbin-smt-empty-value
Add `EMPTY_VALUE` associated constant to SMTs
2023-06-14 09:48:14 -07:00
Bobbin Threadbare
4215e83ae5 feat: add EMPTY_VALUE const to SMTs 2023-06-13 22:53:14 -07:00
Bobbin Threadbare
fe5cac9edc fix: compilation errors 2023-06-13 22:43:08 -07:00
Bobbin Threadbare
53d52b8adc Merge pull request #156 from 0xPolygonMiden/andrew-partial-mt
Partial Merkle tree implementation
2023-06-13 22:10:26 -07:00
Bobbin Threadbare
1be64fc43d Merge pull request #157 from 0xPolygonMiden/tohrnii-digest
refactor: refactor crypto APIs to use RpoDigest instead of Word
2023-06-13 15:06:47 -07:00
Bobbin Threadbare
049ae32cbf chore: clean up test code 2023-06-13 14:40:31 -07:00
Andrey Khmuro
b9def61e28 refactor: improve tests, add error tests 2023-06-13 16:14:07 +03:00
tohrnii
0e0a3fda4f refactor: refactor to clean up and simplify things 2023-06-13 10:53:41 +01:00
tohrnii
fe9aa8c28c refactor: refactor crypto APIs to use RpoDigest instead of Word 2023-06-09 21:27:09 +01:00
Andrey Khmuro
766702e37a refactor: improve tests, small fixes 2023-06-09 13:53:50 +03:00
Andrey Khmuro
218a64b5c7 refactor: small fixes 2023-06-07 17:31:38 +03:00
Andrey Khmuro
2708a23649 refactor: optimize code, fix bugs 2023-06-06 01:36:53 +03:00
Andrey Khmuro
43f1a4cb64 refactor: MerkleStore clippy fix 2023-06-06 01:36:53 +03:00
Andrey Khmuro
55cc71dadf fix: fix add_path func leaf determination 2023-06-06 01:36:53 +03:00
Andrey Khmuro
ebf71c2dc7 refactor: optimize code, remove not momentarily necessary functions 2023-06-06 01:36:53 +03:00
Andrey Khmuro
b4324475b6 feat: change constructor from with_leaves to with_paths 2023-06-06 01:36:53 +03:00
Andrey Khmuro
23f448fb33 feat: partial Merkle tree 2023-06-06 01:36:53 +03:00
Bobbin Threadbare
59f7723221 chore: update crete version to v0.6.0 2023-05-26 14:49:58 -07:00
Bobbin Threadbare
2ed880d976 chore: add TieredSmt to readme 2023-05-26 14:41:22 -07:00
Bobbin Threadbare
daa27f49f2 Merge pull request #140 from 0xPolygonMiden/next
Tracking PR for v0.5 release
2023-05-26 14:36:20 -07:00
Bobbin Threadbare
dcda57f71a chore: update changelog 2023-05-26 14:32:17 -07:00
Bobbin Threadbare
d9e3211418 Merge pull request #153 from 0xPolygonMiden/bobbin-tsmt-iter
Tiered SMT iterators
2023-05-20 22:52:59 -07:00
Bobbin Threadbare
21e7a5c07d feat: implement iterators over contents of TieredSmt 2023-05-20 22:47:07 -07:00
Bobbin Threadbare
02673ff87e Merge pull request #152 from 0xPolygonMiden/bobbin-tsmt
Basic Tiered MST
2023-05-16 15:42:34 -07:00
Bobbin Threadbare
b768eade4d feat: added handling of bottom tier to TieredSmt 2023-05-16 15:38:05 -07:00
Bobbin Threadbare
51ce07cc34 feat: implement basic TieredSmt 2023-05-12 11:33:34 -07:00
Bobbin Threadbare
550738bd94 Merge pull request #151 from 0xPolygonMiden/bobbin-mstore-subset
MerkleStore subset and more
2023-05-11 00:41:01 -07:00
Bobbin Threadbare
629494b601 feat: add leaves() iterator to SimpleSmt 2023-05-11 00:37:16 -07:00
Bobbin Threadbare
13aeda5a27 feat: add subset() to MerkleStore 2023-05-09 18:38:21 -07:00
Bobbin Threadbare
e5aba870a2 Merge pull request #149 from 0xPolygonMiden/bobbin-simple-smt
SimpleSmt updates
2023-05-08 07:35:00 -07:00
Bobbin Threadbare
fcf03478ba refactor: update SimpleSmt interfaces 2023-05-08 00:12:24 -07:00
frisitano
0ddd0db89b Merge pull request #148 from 0xPolygonMiden/frisitano-mmr-accumulator
refactor: Mmr accumulator
2023-05-05 17:56:46 +08:00
frisitano
2100d6c861 refactor(mmr): expose method to join mmr peaks in a vector and pad 2023-05-05 12:03:32 +08:00
Bobbin Threadbare
52409ac039 Merge pull request #146 from 0xPolygonMiden/frisitano-merkle-store-inner-nodes
feat: add .inner_nodes() to [MerkleStore]
2023-05-04 13:49:36 -07:00
frisitano
4555fc918f feat: add .inner_nodes() to [MerkleStore] 2023-05-04 19:15:52 +07:00
Bobbin Threadbare
52db23cd42 chore: update crate version to v0.5.0 2023-04-21 15:48:18 -07:00
Bobbin Threadbare
09025b4014 Merge pull request #129 from 0xPolygonMiden/next
Tracking PR for v0.4 release
2023-04-21 15:38:33 -07:00
Bobbin Threadbare
e983e940b2 chore: update changelog 2023-04-21 14:42:08 -07:00
Bobbin Threadbare
ae4e27b6c7 Merge pull request #139 from 0xPolygonMiden/hacka-support-adding-existing-structures-to-store
store: support adding existing structures
2023-04-21 14:32:52 -07:00
Bobbin Threadbare
130ae3d12a feat: add inner node iterator to MerklePath 2023-04-21 14:27:58 -07:00
Bobbin Threadbare
22c9f382c4 fix: serialization test 2023-04-21 11:39:49 -07:00
Bobbin Threadbare
9be4253f19 feat: remove clone requirement for MerkleStore From constructors 2023-04-21 11:22:36 -07:00
Augusto F. Hack
59595a2e04 feat: added From convertions for the MerkleStore 2023-04-21 14:47:58 +02:00
Augusto F. Hack
eb316f51bc store: remove SimpleSMT/MerkleTree/Mmr add/with methods 2023-04-21 14:47:48 +02:00
Augusto F. Hack
8161477d6a store: support adding existing structures 2023-04-20 13:45:31 +02:00
Augusto Hack
158167356d Merge pull request #138 from 0xPolygonMiden/hacka-merge-support-for-leaves
feat: allow merging of leaves
2023-04-17 12:29:13 +02:00
Augusto F. Hack
3996374a8b feat: allow merging of leaves
Consider the case of a MMR with one entry, and a new entry is being
added. Both of these values are quite unique, they are at the same time
the root and only leaf of their corresponding tree. Currently this
representation is not supported by the [MerkleStore], so the leaves are
not in it. Once the two values are merged, they both become leaves of a
new tree under the new parent, and the existing validation didn't permit
that promotion from happening.

This lifts the validation, and changes the method to clarify that not
only `root` are being merged, by arbitrary nodes of a tree (leafs,
internal, or roots), with arbitrary mixing of each.
2023-04-17 12:21:51 +02:00
Augusto Hack
7fa03c7967 Merge pull request #137 from 0xPolygonMiden/frisitano-reexport-mmr-proof
re-export mmr proof
2023-04-14 14:34:58 +02:00
frisitano
79915cc346 feat: re-export MmrProof 2023-04-14 13:25:19 +01:00
Augusto Hack
45412b5cec Merge pull request #134 from 0xPolygonMiden/add-rustfmt-config
config: add rustfmt config
2023-04-11 17:58:06 +02:00
Augusto F. Hack
bbb1e641a3 config: add rustfmt config 2023-04-11 17:38:39 +02:00
Bobbin Threadbare
e02507d11e chore: update version to v0.4.0 2023-04-08 12:46:53 -07:00
Bobbin Threadbare
b5eb68e46c Merge pull request #120 from 0xPolygonMiden/next
Tracking PR for v0.3 release
2023-04-07 23:55:43 -07:00
Bobbin Threadbare
61db888b2c chore: update crate version to v0.3 2023-04-07 23:44:27 -07:00
Bobbin Threadbare
051167f2e5 Merge pull request #76 from 0xPolygonMiden/bobbin-blake3-opt
BLAKE3 hash_elements() optimization
2023-04-07 23:12:41 -07:00
Victor Lopes
498bc93c15 Merge pull request #125 from 0xPolygonMiden/vlopes11-store-get-leaf-depth
feat: add `MerkleStore::get_leaf_depth`
2023-04-06 23:13:54 +02:00
Victor Lopez
00ffc1568a feat: add MerkleStore::get_leaf_depth
This commit introduces `get_leaf_depth`, a tiered SMT helpers that will
retrieve the depth of a leaf for a given root, capped by `64`.

closes #119
2023-04-06 23:01:38 +02:00
Augusto Hack
cbf51dd3e2 Merge pull request #127 from 0xPolygonMiden/hacka-optimized-peak-hash
mmr: optimized peak hash for Miden VM
2023-04-06 19:38:48 +02:00
Augusto F. Hack
ab903a2229 mmr: optimized peak hash for Miden VM 2023-04-06 18:22:01 +02:00
Bobbin Threadbare
86dba195b4 Merge pull request #124 from 0xPolygonMiden/bobbin-merkle-fixes
Merkle fixes
2023-04-05 12:20:41 -07:00
Bobbin Threadbare
bd557bc68c fix: add validation to NodeIndex constructor and remove BitIterator 2023-04-05 12:08:00 -07:00
Augusto Hack
cf94ac07b7 Merge pull request #121 from 0xPolygonMiden/hacka-simple-smt-parent-node-iterator
feat: add parent node iterator for SimpleSMT
2023-04-05 00:46:32 +02:00
Augusto Hack
d873866f52 Merge pull request #118 from 0xPolygonMiden/hacka-support-mmr-in-the-merkle-store
feat: add support for MMR to the MerkleStore
2023-04-04 23:13:43 +02:00
Augusto F. Hack
9275dd00ad feat: add parent node iterator for SimpleSMT 2023-04-04 22:33:26 +02:00
Augusto F. Hack
429d3bab6f feat: add support for MMR to the MerkleStore 2023-04-04 22:33:01 +02:00
Augusto Hack
f19fe6e739 Merge pull request #117 from 0xPolygonMiden/hacka-simplify-consuming-merkle-tree
feat: add node iterator to MerkleTree
2023-04-04 22:14:38 +02:00
Augusto F. Hack
1df4318399 feat: add node iterator to MerkleTree 2023-04-04 22:11:21 +02:00
Bobbin Threadbare
433b467953 feat: optimized hash_elements for blake3 hasher 2023-04-04 01:06:51 -07:00
Augusto Hack
f46d913b20 Merge pull request #116 from 0xPolygonMiden/hacka-remove-merke-store
Remove SimpleSmt store
2023-03-31 03:12:09 +02:00
Augusto F. Hack
f8a62dae76 chore: remove simple_smt::Store 2023-03-31 03:10:01 +02:00
Victor Lopes
49b9029b46 Merge pull request #115 from 0xPolygonMiden/vlopes11-store-smt-depth
feat: Add `depth` as store SMT argument
2023-03-30 01:19:30 +02:00
Victor Lopez
d37f3f5e84 feat: Add depth as store SMT argument
Prior to this commit, MerkleStore allowed the creation of Sparse Merkle
tree only with the maximum depth of 63. However, this doesn't fit the
Tiered Sparse Merkle tree requirements, as it will contain trees of
depth 16.

This commit adds the `depth` argument to the MerkleStore methods that
will create Sparse Merkle trees.
2023-03-30 01:13:05 +02:00
36 changed files with 4053 additions and 1534 deletions

View File

@@ -1,3 +1,30 @@
## 0.6.0 (2023-06-25)
* [BREAKING] Added support for recording capabilities for `MerkleStore` (#162).
* [BREAKING] Refactored Merkle struct APIs to use `RpoDigest` instead of `Word` (#157).
* Added initial implementation of `PartialMerkleTree` (#156).
## 0.5.0 (2023-05-26)
* Implemented `TieredSmt` (#152, #153).
* Implemented ability to extract a subset of a `MerkleStore` (#151).
* Cleaned up `SimpleSmt` interface (#149).
* Decoupled hashing and padding of peaks in `Mmr` (#148).
* Added `inner_nodes()` to `MerkleStore` (#146).
## 0.4.0 (2023-04-21)
- Exported `MmrProof` from the crate (#137).
- Allowed merging of leaves in `MerkleStore` (#138).
- [BREAKING] Refactored how existing data structures are added to `MerkleStore` (#139).
## 0.3.0 (2023-04-08)
- Added `depth` parameter to SMT constructors in `MerkleStore` (#115).
- Optimized MMR peak hashing for Miden VM (#120).
- Added `get_leaf_depth` method to `MerkleStore` (#119).
- Added inner node iterators to `MerkleTree`, `SimpleSmt`, and `Mmr` (#117, #118, #121).
## 0.2.0 (2023-03-24)
- Implemented `Mmr` and related structs (#67).

View File

@@ -1,12 +1,12 @@
[package]
name = "miden-crypto"
version = "0.2.0"
version = "0.6.0"
description = "Miden Cryptographic primitives"
authors = ["miden contributors"]
readme = "README.md"
license = "MIT"
repository = "https://github.com/0xPolygonMiden/crypto"
documentation = "https://docs.rs/miden-crypto/0.2.0"
documentation = "https://docs.rs/miden-crypto/0.6.0"
categories = ["cryptography", "no-std"]
keywords = ["miden", "crypto", "hash", "merkle"]
edition = "2021"
@@ -35,6 +35,6 @@ winter_math = { version = "0.6", package = "winter-math", default-features = fal
winter_utils = { version = "0.6", package = "winter-utils", default-features = false }
[dev-dependencies]
criterion = { version = "0.4", features = ["html_reports"] }
criterion = { version = "0.5", features = ["html_reports"] }
proptest = "1.1.0"
rand_utils = { version = "0.6", package = "winter-rand-utils" }

View File

@@ -12,17 +12,16 @@ For performance benchmarks of these hash functions and their comparison to other
## Merkle
[Merkle module](./src/merkle/) provides a set of data structures related to Merkle trees. All these data structures are implemented using the RPO hash function described above. The data structures are:
* `MerkleTree`: a regular fully-balanced binary Merkle tree. The depth of this tree can be at most 64.
* `SimpleSmt`: a Sparse Merkle Tree, mapping 63-bit keys to 4-element leaf values.
* `MerklePathSet`: a collection of Merkle authentication paths all resolving to the same root. The length of the paths can be at most 64.
* `MerkleStore`: a collection of Merkle trees of different heights designed to efficiently store trees with common subtrees.
* `Mmr`: a Merkle mountain range structure designed to function as an append-only log.
* `MerkleTree`: a regular fully-balanced binary Merkle tree. The depth of this tree can be at most 64.
* `MerklePathSet`: a collection of Merkle authentication paths all resolving to the same root. The length of the paths can be at most 64.
* `MerkleStore`: a collection of Merkle trees of different heights designed to efficiently store trees with common subtrees. When instantiated with `RecordingMap`, a Merkle store records all accesses to the original data.
* `PartialMerkleTree`: a partial view of a Merkle tree where some sub-trees may not be known. This is similar to a collection of Merkle paths all resolving to the same root. The length of the paths can be at most 64.
* `SimpleSmt`: a Sparse Merkle Tree (with no compaction), mapping 64-bit keys to 4-element values.
* `TieredSmt`: a Sparse Merkle tree (with compaction), mapping 4-element keys to 4-element values.
The module also contains additional supporting components such as `NodeIndex`, `MerklePath`, and `MerkleError` to assist with tree indexation, opening proofs, and reporting inconsistent arguments/state.
## Extra
[Root module](./src/lib.rs) provides a set of constants, types, aliases, and utils required to use the primitives of this library.
## Crate features
This crate can be compiled with the following features:

View File

@@ -28,7 +28,7 @@ The second scenario is that of sequential hashing where we take a sequence of le
| Function | BLAKE3 | SHA3 | Poseidon | Rp64_256 | RPO_256 |
| ------------------- | -------| ------- | --------- | --------- | ------- |
| Apple M1 Pro | 1.1 us | 1.5 us | 19.4 us | 118 us | 70 us |
| Apple M1 Pro | 1.0 us | 1.5 us | 19.4 us | 118 us | 70 us |
| Apple M2 | 1.0 us | 1.5 us | 17.4 us | 103 us | 65 us |
| Amazon Graviton 3 | 1.4 us | | | | 114 us |
| AMD Ryzen 9 5950X | 0.8 us | 1.7 us | 15.7 us | 120 us | 72 us |

View File

@@ -106,11 +106,5 @@ fn blake3_sequential(c: &mut Criterion) {
});
}
criterion_group!(
hash_group,
rpo256_2to1,
rpo256_sequential,
blake3_2to1,
blake3_sequential
);
criterion_group!(hash_group, rpo256_2to1, rpo256_sequential, blake3_2to1, blake3_sequential);
criterion_main!(hash_group);

View File

@@ -18,8 +18,8 @@ fn smt_rpo(c: &mut Criterion) {
(i, word)
})
.collect();
let tree = SimpleSmt::new(depth).unwrap().with_leaves(entries).unwrap();
trees.push(tree);
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
trees.push((tree, count));
}
}
@@ -29,10 +29,9 @@ fn smt_rpo(c: &mut Criterion) {
let mut insert = c.benchmark_group(format!("smt update_leaf"));
for tree in trees.iter_mut() {
for (tree, count) in trees.iter_mut() {
let depth = tree.depth();
let count = tree.leaves_count() as u64;
let key = count >> 2;
let key = *count >> 2;
insert.bench_with_input(
format!("simple smt(depth:{depth},count:{count})"),
&(key, leaf),
@@ -48,10 +47,9 @@ fn smt_rpo(c: &mut Criterion) {
let mut path = c.benchmark_group(format!("smt get_leaf_path"));
for tree in trees.iter_mut() {
for (tree, count) in trees.iter_mut() {
let depth = tree.depth();
let count = tree.leaves_count() as u64;
let key = count >> 2;
let key = *count >> 2;
path.bench_with_input(
format!("simple smt(depth:{depth},count:{count})"),
&key,
@@ -75,10 +73,5 @@ criterion_main!(smt_group);
fn generate_word(seed: &mut [u8; 32]) -> Word {
swap(seed, &mut prng_array(*seed));
let nums: [u64; 4] = prng_array(*seed);
[
Felt::new(nums[0]),
Felt::new(nums[1]),
Felt::new(nums[2]),
Felt::new(nums[3]),
]
[Felt::new(nums[0]), Felt::new(nums[1]), Felt::new(nums[2]), Felt::new(nums[3])]
}

View File

@@ -1,5 +1,5 @@
use criterion::{black_box, criterion_group, criterion_main, BatchSize, BenchmarkId, Criterion};
use miden_crypto::merkle::{MerkleStore, MerkleTree, NodeIndex, SimpleSmt};
use miden_crypto::merkle::{DefaultMerkleStore as MerkleStore, MerkleTree, NodeIndex, SimpleSmt};
use miden_crypto::Word;
use miden_crypto::{hash::rpo::RpoDigest, Felt};
use rand_utils::{rand_array, rand_value};
@@ -18,36 +18,37 @@ fn random_word() -> Word {
rand_array::<Felt, 4>().into()
}
/// Generates a u64 in `0..range`.
fn random_index(range: u64) -> u64 {
rand_value::<u64>() % range
/// Generates an index at the specified depth in `0..range`.
fn random_index(range: u64, depth: u8) -> NodeIndex {
let value = rand_value::<u64>() % range;
NodeIndex::new(depth, value).unwrap()
}
/// Benchmarks getting an empty leaf from the SMT and MerkleStore backends.
fn get_empty_leaf_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("get_empty_leaf_simplesmt");
let depth = 63u8;
let size = 2u64.pow(depth as u32);
let depth = SimpleSmt::MAX_DEPTH;
let size = u64::MAX;
// both SMT and the store are pre-populated with empty hashes, accessing these values is what is
// being benchmarked here, so no values are inserted into the backends
let smt = SimpleSmt::new(depth).unwrap();
let store = MerkleStore::new();
let store = MerkleStore::from(&smt);
let root = smt.root();
group.bench_function(BenchmarkId::new("SimpleSmt", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(smt.get_node(&NodeIndex::new(depth, value))),
|| random_index(size, depth),
|index| black_box(smt.get_node(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
|| random_index(size, depth),
|index| black_box(store.get_node(root, index)),
BatchSize::SmallInput,
)
});
@@ -65,23 +66,23 @@ fn get_leaf_merkletree(c: &mut Criterion) {
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let store = MerkleStore::from(&mtree);
let depth = mtree.depth();
let root = mtree.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(mtree.get_node(NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(mtree.get_node(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(store.get_node(root, index)),
BatchSize::SmallInput,
)
});
@@ -103,29 +104,24 @@ fn get_leaf_simplesmt(c: &mut Criterion) {
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
let store = MerkleStore::from(&smt);
let depth = smt.depth();
let root = smt.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(smt.get_node(&NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(smt.get_node(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(store.get_node(root, index)),
BatchSize::SmallInput,
)
});
@@ -136,29 +132,29 @@ fn get_leaf_simplesmt(c: &mut Criterion) {
fn get_node_of_empty_simplesmt(c: &mut Criterion) {
let mut group = c.benchmark_group("get_node_of_empty_simplesmt");
let depth = 63u8;
let size = 2u64.pow(depth as u32);
let depth = SimpleSmt::MAX_DEPTH;
// both SMT and the store are pre-populated with the empty hashes, accessing the internal nodes
// of these values is what is being benchmarked here, so no values are inserted into the
// backends.
let smt = SimpleSmt::new(depth).unwrap();
let store = MerkleStore::new();
let store = MerkleStore::from(&smt);
let root = smt.root();
let half_depth = depth / 2;
let half_size = 2_u64.pow(half_depth as u32);
group.bench_function(BenchmarkId::new("SimpleSmt", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(smt.get_node(&NodeIndex::new(half_depth, value))),
|| random_index(half_size, half_depth),
|index| black_box(smt.get_node(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", depth), |b| {
b.iter_batched(
|| random_index(size),
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
|| random_index(half_size, half_depth),
|index| black_box(store.get_node(root, index)),
BatchSize::SmallInput,
)
});
@@ -177,23 +173,23 @@ fn get_node_merkletree(c: &mut Criterion) {
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let half_depth = mtree.depth() / 2;
let store = MerkleStore::from(&mtree);
let root = mtree.root();
let size_u64 = size as u64;
let half_depth = mtree.depth() / 2;
let half_size = 2_u64.pow(half_depth as u32);
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(mtree.get_node(NodeIndex::new(half_depth, value))),
|| random_index(half_size, half_depth),
|index| black_box(mtree.get_node(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
|| random_index(half_size, half_depth),
|index| black_box(store.get_node(root, index)),
BatchSize::SmallInput,
)
});
@@ -216,29 +212,24 @@ fn get_node_simplesmt(c: &mut Criterion) {
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
let store = MerkleStore::from(&smt);
let root = smt.root();
let size_u64 = size as u64;
let half_depth = smt.depth() / 2;
let half_size = 2_u64.pow(half_depth as u32);
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(smt.get_node(&NodeIndex::new(half_depth, value))),
|| random_index(half_size, half_depth),
|index| black_box(smt.get_node(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_node(root, NodeIndex::new(half_depth, value))),
|| random_index(half_size, half_depth),
|index| black_box(store.get_node(root, index)),
BatchSize::SmallInput,
)
});
@@ -257,23 +248,23 @@ fn get_leaf_path_merkletree(c: &mut Criterion) {
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let store = MerkleStore::from(&mtree);
let depth = mtree.depth();
let root = mtree.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(mtree.get_path(NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(mtree.get_path(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_path(root, NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(store.get_path(root, index)),
BatchSize::SmallInput,
)
});
@@ -295,29 +286,24 @@ fn get_leaf_path_simplesmt(c: &mut Criterion) {
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
let store = MerkleStore::from(&smt);
let depth = smt.depth();
let root = smt.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("SimpleSmt", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(smt.get_path(NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(smt.get_path(index)),
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| random_index(size_u64),
|value| black_box(store.get_path(root, NodeIndex::new(depth, value))),
|| random_index(size_u64, depth),
|index| black_box(store.get_path(root, index)),
BatchSize::SmallInput,
)
});
@@ -346,16 +332,16 @@ fn new(c: &mut Criterion) {
// This could be done with `bench_with_input`, however to remove variables while comparing
// with MerkleTree it is using `iter_batched`
group.bench_function(
BenchmarkId::new("MerkleStore::with_merkle_tree", size),
|b| {
b.iter_batched(
|| leaves.iter().map(|v| v.into()).collect::<Vec<Word>>(),
|l| black_box(MerkleStore::new().with_merkle_tree(l)),
BatchSize::SmallInput,
)
},
);
group.bench_function(BenchmarkId::new("MerkleStore::extend::MerkleTree", size), |b| {
b.iter_batched(
|| leaves.iter().map(|v| v.into()).collect::<Vec<Word>>(),
|l| {
let mtree = MerkleTree::new(l).unwrap();
black_box(MerkleStore::from(&mtree));
},
BatchSize::SmallInput,
)
});
group.bench_function(BenchmarkId::new("SimpleSmt::new", size), |b| {
b.iter_batched(
@@ -366,27 +352,27 @@ fn new(c: &mut Criterion) {
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>()
},
|l| black_box(SimpleSmt::new(63).unwrap().with_leaves(l)),
|l| black_box(SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, l)),
BatchSize::SmallInput,
)
});
group.bench_function(
BenchmarkId::new("MerkleStore::with_sparse_merkle_tree", size),
|b| {
b.iter_batched(
|| {
leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>()
},
|l| black_box(MerkleStore::new().with_sparse_merkle_tree(l)),
BatchSize::SmallInput,
)
},
);
group.bench_function(BenchmarkId::new("MerkleStore::extend::SimpleSmt", size), |b| {
b.iter_batched(
|| {
leaves
.iter()
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>()
},
|l| {
let smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, l).unwrap();
black_box(MerkleStore::from(&smt));
},
BatchSize::SmallInput,
)
});
}
}
@@ -402,14 +388,14 @@ fn update_leaf_merkletree(c: &mut Criterion) {
let mtree_leaves: Vec<Word> = leaves.iter().map(|v| v.into()).collect();
let mut mtree = MerkleTree::new(mtree_leaves.clone()).unwrap();
let mut store = MerkleStore::new().with_merkle_tree(mtree_leaves).unwrap();
let mut store = MerkleStore::from(&mtree);
let depth = mtree.depth();
let root = mtree.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("MerkleTree", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|| (rand_value::<u64>() % size_u64, random_word()),
|(index, value)| black_box(mtree.update_leaf(index, value)),
BatchSize::SmallInput,
)
@@ -418,15 +404,12 @@ fn update_leaf_merkletree(c: &mut Criterion) {
let mut store_root = root;
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|| (random_index(size_u64, depth), random_word()),
|(index, value)| {
// The MerkleTree automatically updates its internal root, the Store maintains
// the old root and adds the new one. Here we update the root to have a fair
// comparison
store_root = store
.set_node(root, NodeIndex::new(depth, index), value)
.unwrap()
.root;
store_root = store.set_node(root, index, value.into()).unwrap().root;
black_box(store_root)
},
BatchSize::SmallInput,
@@ -450,20 +433,15 @@ fn update_leaf_simplesmt(c: &mut Criterion) {
.enumerate()
.map(|(c, v)| (c.try_into().unwrap(), v.into()))
.collect::<Vec<(u64, Word)>>();
let mut smt = SimpleSmt::new(63)
.unwrap()
.with_leaves(smt_leaves.clone())
.unwrap();
let mut store = MerkleStore::new()
.with_sparse_merkle_tree(smt_leaves)
.unwrap();
let mut smt = SimpleSmt::with_leaves(SimpleSmt::MAX_DEPTH, smt_leaves.clone()).unwrap();
let mut store = MerkleStore::from(&smt);
let depth = smt.depth();
let root = smt.root();
let size_u64 = size as u64;
group.bench_function(BenchmarkId::new("SimpleSMT", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|| (rand_value::<u64>() % size_u64, random_word()),
|(index, value)| black_box(smt.update_leaf(index, value)),
BatchSize::SmallInput,
)
@@ -472,15 +450,12 @@ fn update_leaf_simplesmt(c: &mut Criterion) {
let mut store_root = root;
group.bench_function(BenchmarkId::new("MerkleStore", size), |b| {
b.iter_batched(
|| (random_index(size_u64), random_word()),
|| (random_index(size_u64, depth), random_word()),
|(index, value)| {
// The MerkleTree automatically updates its internal root, the Store maintains
// the old root and adds the new one. Here we update the root to have a fair
// comparison
store_root = store
.set_node(root, NodeIndex::new(depth, index), value)
.unwrap()
.root;
store_root = store.set_node(root, index, value.into()).unwrap().root;
black_box(store_root)
},
BatchSize::SmallInput,

20
rustfmt.toml Normal file
View File

@@ -0,0 +1,20 @@
edition = "2021"
array_width = 80
attr_fn_like_width = 80
chain_width = 80
#condense_wildcard_suffixes = true
#enum_discrim_align_threshold = 40
fn_call_width = 80
#fn_single_line = true
#format_code_in_doc_comments = true
#format_macro_matchers = true
#format_strings = true
#group_imports = "StdExternalCrate"
#hex_literal_case = "Lower"
#imports_granularity = "Crate"
newline_style = "Unix"
#normalize_doc_attributes = true
#reorder_impl_items = true
single_line_if_else_max_width = 60
use_field_init_shorthand = true
use_try_shorthand = true

View File

@@ -1,169 +0,0 @@
/// Yields the bits of a `u64`.
pub struct BitIterator {
/// The value that is being iterated bit-wise
value: u64,
/// True bits in the `mask` are the bits that have been visited.
mask: u64,
}
impl BitIterator {
pub fn new(value: u64) -> BitIterator {
BitIterator { value, mask: 0 }
}
/// An efficient skip implementation.
///
/// Note: The compiler is smart enough to translate a `skip(n)` into a single shift instruction
/// if the code is inlined, however inlining does not always happen.
pub fn skip_front(mut self, n: u32) -> Self {
let mask = bitmask(n);
let ones = self.mask.trailing_ones();
let mask_position = ones;
self.mask ^= mask.checked_shl(mask_position).unwrap_or(0);
self
}
/// An efficient skip from the back.
///
/// Note: The compiler is smart enough to translate a `skip(n)` into a single shift instruction
/// if the code is inlined, however inlining does not always happen.
pub fn skip_back(mut self, n: u32) -> Self {
let mask = bitmask(n);
let ones = self.mask.leading_ones();
let mask_position = u64::BITS - ones - n;
self.mask ^= mask.checked_shl(mask_position).unwrap_or(0);
self
}
}
impl Iterator for BitIterator {
type Item = bool;
fn next(&mut self) -> Option<<Self as Iterator>::Item> {
// trailing_ones is implemented with trailing_zeros, and the zeros are computed with the
// intrinsic cttz. [Rust 1.67.0] x86 uses the `bsf` instruction. AArch64 uses the `rbit
// clz` instructions.
let ones = self.mask.trailing_ones();
if ones == u64::BITS {
None
} else {
let bit_position = ones;
let mask = 1 << bit_position;
self.mask ^= mask;
let bit = self.value & mask;
Some(bit != 0)
}
}
}
impl DoubleEndedIterator for BitIterator {
fn next_back(&mut self) -> Option<<Self as Iterator>::Item> {
// leading_ones is implemented with leading_zeros, and the zeros are computed with the
// intrinsic ctlz. [Rust 1.67.0] x86 uses the `bsr` instruction. AArch64 uses the `clz`
// instruction.
let ones = self.mask.leading_ones();
if ones == u64::BITS {
None
} else {
let bit_position = u64::BITS - ones - 1;
let mask = 1 << bit_position;
self.mask ^= mask;
let bit = self.value & mask;
Some(bit != 0)
}
}
}
#[cfg(test)]
mod test {
use super::BitIterator;
#[test]
fn test_bit_iterator() {
let v = 0b1;
let mut it = BitIterator::new(v);
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v);
assert!(!it.next().unwrap(), "first bit is false");
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v);
assert!(!it.next_back().unwrap(), "last bit is false");
assert!(!it.next().unwrap(), "first bit is false");
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
}
#[test]
fn test_bit_iterator_skip() {
let v = 0b1;
let mut it = BitIterator::new(v).skip_front(1);
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v).skip_front(1);
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
let high_bit = 0b1 << (u64::BITS - 1);
let mut it = BitIterator::new(high_bit).skip_back(1);
assert!(it.all(|v| v == false), "every other value is false");
let v = 0b10;
let mut it = BitIterator::new(v).skip_back(1);
assert!(!it.next_back().unwrap(), "last bit is false");
assert!(!it.next().unwrap(), "first bit is false");
assert!(it.next().unwrap(), "first bit is true");
assert!(it.all(|v| v == false), "every other value is false");
}
#[test]
fn test_skip_all() {
let v = 0b1;
let mut it = BitIterator::new(v).skip_front(u64::BITS);
assert!(it.next().is_none(), "iterator must be exhausted");
let v = 0b1;
let mut it = BitIterator::new(v).skip_back(u64::BITS);
assert!(it.next().is_none(), "iterator must be exhausted");
}
#[test]
fn test_bit_iterator_count_bits_after_skip() {
let any_value = 0b1;
for s in 0..u64::BITS {
let it = BitIterator::new(any_value).skip_front(s);
assert_eq!(it.count() as u32, u64::BITS - s)
}
let any_value = 0b1;
for s in 1..u64::BITS {
let it = BitIterator::new(any_value).skip_back(s);
assert_eq!(it.count() as u32, u64::BITS - s)
}
}
#[test]
fn test_bit_iterator_rev() {
let v = 0b1;
let mut it = BitIterator::new(v).rev();
assert!(it.nth(63).unwrap(), "the last value is true");
}
}
// UTILITIES
// ===============================================================================================
fn bitmask(s: u32) -> u64 {
match 1u64.checked_shl(s) {
Some(r) => r - 1,
None => u64::MAX,
}
}

View File

@@ -1,7 +1,5 @@
use super::{Digest, ElementHasher, Felt, FieldElement, Hasher, StarkField};
use crate::utils::{
uninit_vector, ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable,
};
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
use core::{
mem::{size_of, transmute, transmute_copy},
ops::Deref,
@@ -272,10 +270,7 @@ impl Blake3_160 {
/// Zero-copy ref shrink to array.
fn shrink_bytes<const M: usize, const N: usize>(bytes: &[u8; M]) -> &[u8; N] {
// compile-time assertion
assert!(
M >= N,
"N should fit in M so it can be safely transmuted into a smaller slice!"
);
assert!(M >= N, "N should fit in M so it can be safely transmuted into a smaller slice!");
// safety: bytes len is asserted
unsafe { transmute(bytes) }
}
@@ -290,15 +285,25 @@ where
let digest = if Felt::IS_CANONICAL {
blake3::hash(E::elements_as_bytes(elements))
} else {
let base_elements = E::slice_as_base_elements(elements);
let blen = base_elements.len() << 3;
let mut hasher = blake3::Hasher::new();
let mut bytes = unsafe { uninit_vector(blen) };
for (idx, element) in base_elements.iter().enumerate() {
bytes[idx * 8..(idx + 1) * 8].copy_from_slice(&element.as_int().to_le_bytes());
// BLAKE3 state is 64 bytes - so, we can absorb 64 bytes into the state in a single
// permutation. we move the elements into the hasher via the buffer to give the CPU
// a chance to process multiple element-to-byte conversions in parallel
let mut buf = [0_u8; 64];
let mut chunk_iter = E::slice_as_base_elements(elements).chunks_exact(8);
for chunk in chunk_iter.by_ref() {
for i in 0..8 {
buf[i * 8..(i + 1) * 8].copy_from_slice(&chunk[i].as_int().to_le_bytes());
}
hasher.update(&buf);
}
blake3::hash(&bytes)
for element in chunk_iter.remainder() {
hasher.update(&element.as_int().to_le_bytes());
}
hasher.finalize()
};
*shrink_bytes(&digest.into())
}

View File

@@ -1,6 +1,22 @@
use super::*;
use crate::utils::collections::Vec;
use proptest::prelude::*;
use rand_utils::rand_vector;
#[test]
fn blake3_hash_elements() {
// test multiple of 8
let elements = rand_vector::<Felt>(16);
let expected = compute_expected_element_hash(&elements);
let actual: [u8; 32] = hash_elements(&elements);
assert_eq!(&expected, &actual);
// test not multiple of 8
let elements = rand_vector::<Felt>(17);
let expected = compute_expected_element_hash(&elements);
let actual: [u8; 32] = hash_elements(&elements);
assert_eq!(&expected, &actual);
}
proptest! {
#[test]
@@ -18,3 +34,14 @@ proptest! {
Blake3_256::hash(vec);
}
}
// HELPER FUNCTIONS
// ================================================================================================
fn compute_expected_element_hash(elements: &[Felt]) -> blake3::Hash {
let mut bytes = Vec::new();
for element in elements.iter() {
bytes.extend_from_slice(&element.as_int().to_le_bytes());
}
blake3::hash(&bytes)
}

View File

@@ -2,7 +2,7 @@ use super::{Digest, Felt, StarkField, DIGEST_SIZE, ZERO};
use crate::utils::{
string::String, ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable,
};
use core::{cmp::Ordering, ops::Deref};
use core::{cmp::Ordering, fmt::Display, ops::Deref};
// DIGEST TRAIT IMPLEMENTATIONS
// ================================================================================================
@@ -85,6 +85,28 @@ impl From<RpoDigest> for [Felt; DIGEST_SIZE] {
}
}
impl From<&RpoDigest> for [u64; DIGEST_SIZE] {
fn from(value: &RpoDigest) -> Self {
[
value.0[0].as_int(),
value.0[1].as_int(),
value.0[2].as_int(),
value.0[3].as_int(),
]
}
}
impl From<RpoDigest> for [u64; DIGEST_SIZE] {
fn from(value: RpoDigest) -> Self {
[
value.0[0].as_int(),
value.0[1].as_int(),
value.0[2].as_int(),
value.0[3].as_int(),
]
}
}
impl From<&RpoDigest> for [u8; 32] {
fn from(value: &RpoDigest) -> Self {
value.as_bytes()
@@ -118,14 +140,13 @@ impl Ord for RpoDigest {
// finally, we use `Felt::inner` instead of `Felt::as_int` so we avoid performing a
// montgomery reduction for every limb. that is safe because every inner element of the
// digest is guaranteed to be in its canonical form (that is, `x in [0,p)`).
self.0
.iter()
.map(Felt::inner)
.zip(other.0.iter().map(Felt::inner))
.fold(Ordering::Equal, |ord, (a, b)| match ord {
self.0.iter().map(Felt::inner).zip(other.0.iter().map(Felt::inner)).fold(
Ordering::Equal,
|ord, (a, b)| match ord {
Ordering::Equal => a.cmp(&b),
_ => ord,
})
},
)
}
}
@@ -135,6 +156,15 @@ impl PartialOrd for RpoDigest {
}
}
impl Display for RpoDigest {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
for byte in self.as_bytes() {
write!(f, "{byte:02x}")?;
}
Ok(())
}
}
// TESTS
// ================================================================================================

View File

@@ -2,7 +2,10 @@ use super::{
Felt, FieldElement, Hasher, Rpo256, RpoDigest, StarkField, ALPHA, INV_ALPHA, ONE, STATE_WIDTH,
ZERO,
};
use crate::utils::collections::{BTreeSet, Vec};
use crate::{
utils::collections::{BTreeSet, Vec},
Word,
};
use core::convert::TryInto;
use proptest::prelude::*;
use rand_utils::rand_value;
@@ -203,7 +206,7 @@ fn sponge_bytes_with_remainder_length_wont_panic() {
// size.
//
// this is a preliminary test to the fuzzy-stress of proptest.
Rpo256::hash(&vec![0; 113]);
Rpo256::hash(&[0; 113]);
}
#[test]
@@ -227,12 +230,12 @@ fn sponge_zeroes_collision() {
proptest! {
#[test]
fn rpo256_wont_panic_with_arbitrary_input(ref vec in any::<Vec<u8>>()) {
Rpo256::hash(&vec);
fn rpo256_wont_panic_with_arbitrary_input(ref bytes in any::<Vec<u8>>()) {
Rpo256::hash(bytes);
}
}
const EXPECTED: [[Felt; 4]; 19] = [
const EXPECTED: [Word; 19] = [
[
Felt::new(1502364727743950833),
Felt::new(5880949717274681448),

View File

@@ -4,7 +4,6 @@
#[cfg_attr(test, macro_use)]
extern crate alloc;
mod bit;
pub mod hash;
pub mod merkle;
pub mod utils;

View File

@@ -1,6 +1,12 @@
use super::{Felt, RpoDigest, WORD_SIZE, ZERO};
use super::{Felt, RpoDigest, Word, WORD_SIZE, ZERO};
use core::slice;
// CONSTANTS
// ================================================================================================
/// A word consisting of 4 ZERO elements.
pub const EMPTY_WORD: Word = [ZERO; WORD_SIZE];
// EMPTY NODES SUBTREES
// ================================================================================================
@@ -1570,7 +1576,7 @@ fn all_depths_opens_to_zero() {
assert_eq!(depth as usize + 1, subtree.len());
// assert the opening is zero
let initial = RpoDigest::new([ZERO; WORD_SIZE]);
let initial = RpoDigest::new(EMPTY_WORD);
assert_eq!(initial, subtree.remove(0));
// compute every node of the path manually and compare with the output

View File

@@ -1,13 +1,24 @@
use super::{Felt, MerkleError, RpoDigest, StarkField};
use crate::bit::BitIterator;
use core::fmt::Display;
// NODE INDEX
// ================================================================================================
/// A Merkle tree address to an arbitrary node.
/// Address to an arbitrary node in a binary tree using level order form.
///
/// The position is relative to a tree in level order, where for a given depth `d` elements are
/// numbered from $0..2^d$.
/// The position is represented by the pair `(depth, pos)`, where for a given depth `d` elements
/// are numbered from $0..(2^d)-1$. Example:
///
/// ```ignore
/// depth
/// 0 0
/// 1 0 1
/// 2 0 1 2 3
/// 3 0 1 2 3 4 5 6 7
/// ```
///
/// The root is represented by the pair $(0, 0)$, its left child is $(1, 0)$ and its right child
/// $(1, 1)$.
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
pub struct NodeIndex {
depth: u8,
@@ -19,20 +30,43 @@ impl NodeIndex {
// --------------------------------------------------------------------------------------------
/// Creates a new node index.
pub const fn new(depth: u8, value: u64) -> Self {
///
/// # Errors
/// Returns an error if the `value` is greater than or equal to 2^{depth}.
pub const fn new(depth: u8, value: u64) -> Result<Self, MerkleError> {
if (64 - value.leading_zeros()) > depth as u32 {
Err(MerkleError::InvalidIndex { depth, value })
} else {
Ok(Self { depth, value })
}
}
/// Creates a new node index without checking its validity.
pub const fn new_unchecked(depth: u8, value: u64) -> Self {
debug_assert!((64 - value.leading_zeros()) <= depth as u32);
Self { depth, value }
}
/// Creates a new node index for testing purposes.
///
/// # Panics
/// Panics if the `value` is greater than or equal to 2^{depth}.
#[cfg(test)]
pub fn make(depth: u8, value: u64) -> Self {
Self::new(depth, value).unwrap()
}
/// Creates a node index from a pair of field elements representing the depth and value.
///
/// # Errors
///
/// Will error if the `u64` representation of the depth doesn't fit a `u8`.
/// Returns an error if:
/// - `depth` doesn't fit in a `u8`.
/// - `value` is greater than or equal to 2^{depth}.
pub fn from_elements(depth: &Felt, value: &Felt) -> Result<Self, MerkleError> {
let depth = depth.as_int();
let depth = u8::try_from(depth).map_err(|_| MerkleError::DepthTooBig(depth))?;
let value = value.as_int();
Ok(Self::new(depth, value))
Self::new(depth, value)
}
/// Creates a new node index pointing to the root of the tree.
@@ -40,15 +74,23 @@ impl NodeIndex {
Self { depth: 0, value: 0 }
}
/// Mutates the instance and returns it, replacing the depth.
pub const fn with_depth(mut self, depth: u8) -> Self {
self.depth = depth;
/// Computes sibling index of the current node.
pub const fn sibling(mut self) -> Self {
self.value ^= 1;
self
}
/// Computes the value of the sibling of the current node.
pub fn sibling(mut self) -> Self {
self.value ^= 1;
/// Returns left child index of the current node.
pub const fn left_child(mut self) -> Self {
self.depth += 1;
self.value <<= 1;
self
}
/// Returns right child index of the current node.
pub const fn right_child(mut self) -> Self {
self.depth += 1;
self.value = (self.value << 1) + 1;
self
}
@@ -83,11 +125,6 @@ impl NodeIndex {
self.value
}
/// Returns true if the current value fits the current depth for a binary tree.
pub const fn is_valid(&self) -> bool {
self.value < (1 << self.depth as u64)
}
/// Returns true if the current instance points to a right sibling node.
pub const fn is_value_odd(&self) -> bool {
(self.value & 1) == 1
@@ -98,27 +135,29 @@ impl NodeIndex {
self.depth == 0
}
/// Returns a bit iterator for the `value`.
///
/// Bits read from left-to-right represent which internal node's child should be visited to
/// arrive at the leaf. From the right-to-left the bit represent the position the hash of the
/// current element should go.
///
/// Additionally, the value that is not visited are the sibling values necessary for a Merkle
/// opening.
pub fn bit_iterator(&self) -> BitIterator {
let depth: u32 = self.depth.into();
BitIterator::new(self.value).skip_back(u64::BITS - depth)
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Traverse one level towards the root, decrementing the depth by `1`.
pub fn move_up(&mut self) -> &mut Self {
/// Traverses one level towards the root, decrementing the depth by `1`.
pub fn move_up(&mut self) {
self.depth = self.depth.saturating_sub(1);
self.value >>= 1;
self
}
/// Traverses towards the root until the specified depth is reached.
///
/// Assumes that the specified depth is smaller than the current depth.
pub fn move_up_to(&mut self, depth: u8) {
debug_assert!(depth < self.depth);
let delta = self.depth.saturating_sub(depth);
self.depth = self.depth.saturating_sub(delta);
self.value >>= delta as u32;
}
}
impl Display for NodeIndex {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "depth={}, value={}", self.depth, self.value)
}
}
@@ -127,14 +166,40 @@ mod tests {
use super::*;
use proptest::prelude::*;
#[test]
fn test_node_index_value_too_high() {
assert_eq!(NodeIndex::new(0, 0).unwrap(), NodeIndex { depth: 0, value: 0 });
match NodeIndex::new(0, 1) {
Err(MerkleError::InvalidIndex { depth, value }) => {
assert_eq!(depth, 0);
assert_eq!(value, 1);
}
_ => unreachable!(),
}
}
#[test]
fn test_node_index_can_represent_depth_64() {
assert!(NodeIndex::new(64, u64::MAX).is_ok());
}
prop_compose! {
fn node_index()(value in 0..2u64.pow(u64::BITS - 1)) -> NodeIndex {
// unwrap never panics because the range of depth is 0..u64::BITS
let mut depth = value.ilog2() as u8;
if value > (1 << depth) { // round up
depth += 1;
}
NodeIndex::new(depth, value).unwrap()
}
}
proptest! {
#[test]
fn arbitrary_index_wont_panic_on_move_up(
depth in prop::num::u8::ANY,
value in prop::num::u64::ANY,
mut index in node_index(),
count in prop::num::u8::ANY,
) {
let mut index = NodeIndex::new(depth, value);
for _ in 0..count {
index.move_up();
}

View File

@@ -1,9 +1,6 @@
use super::{Felt, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word};
use crate::{
utils::{string::String, uninit_vector, word_to_hex},
FieldElement,
};
use core::{fmt, slice};
use super::{InnerNodeInfo, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word};
use crate::utils::{string::String, uninit_vector, word_to_hex};
use core::{fmt, ops::Deref, slice};
use winter_math::log2;
// MERKLE TREE
@@ -12,7 +9,7 @@ use winter_math::log2;
/// A fully-balanced binary Merkle tree (i.e., a tree where the number of leaves is a power of two).
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MerkleTree {
pub(crate) nodes: Vec<Word>,
nodes: Vec<RpoDigest>,
}
impl MerkleTree {
@@ -32,10 +29,12 @@ impl MerkleTree {
// create un-initialized vector to hold all tree nodes
let mut nodes = unsafe { uninit_vector(2 * n) };
nodes[0] = [Felt::ZERO; 4];
nodes[0] = RpoDigest::default();
// copy leaves into the second part of the nodes vector
nodes[n..].copy_from_slice(&leaves);
nodes[n..].iter_mut().zip(leaves).for_each(|(node, leaf)| {
*node = RpoDigest::from(leaf);
});
// re-interpret nodes as an array of two nodes fused together
// Safety: `nodes` will never move here as it is not bound to an external lifetime (i.e.
@@ -45,7 +44,7 @@ impl MerkleTree {
// calculate all internal tree nodes
for i in (1..n).rev() {
nodes[i] = Rpo256::merge(&pairs[i]).into();
nodes[i] = Rpo256::merge(&pairs[i]);
}
Ok(Self { nodes })
@@ -55,7 +54,7 @@ impl MerkleTree {
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub fn root(&self) -> Word {
pub fn root(&self) -> RpoDigest {
self.nodes[1]
}
@@ -72,13 +71,11 @@ impl MerkleTree {
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
/// * The specified index is not valid for the specified depth.
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > self.depth() {
return Err(MerkleError::DepthTooBig(index.depth() as u64));
} else if !index.is_valid() {
return Err(MerkleError::InvalidIndex(index));
}
let pos = index.to_scalar_index() as usize;
@@ -97,8 +94,6 @@ impl MerkleTree {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > self.depth() {
return Err(MerkleError::DepthTooBig(index.depth() as u64));
} else if !index.is_valid() {
return Err(MerkleError::InvalidIndex(index));
}
// TODO should we create a helper in `NodeIndex` that will encapsulate traversal to root so
@@ -111,24 +106,43 @@ impl MerkleTree {
index.move_up();
}
debug_assert!(
index.is_root(),
"the path walk must go all the way to the root"
);
debug_assert!(index.is_root(), "the path walk must go all the way to the root");
Ok(path.into())
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the leaves of this [MerkleTree].
pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
let leaves_start = self.nodes.len() / 2;
self.nodes
.iter()
.skip(leaves_start)
.enumerate()
.map(|(i, v)| (i as u64, v.deref()))
}
/// Returns n iterator over every inner node of this [MerkleTree].
///
/// The iterator order is unspecified.
pub fn inner_nodes(&self) -> InnerNodeIterator {
InnerNodeIterator {
nodes: &self.nodes,
index: 1, // index 0 is just padding, start at 1
}
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Replaces the leaf at the specified index with the provided value.
///
/// # Errors
/// Returns an error if the specified index value is not a valid leaf value for this tree.
pub fn update_leaf<'a>(&'a mut self, index_value: u64, value: Word) -> Result<(), MerkleError> {
let depth = self.depth();
let mut index = NodeIndex::new(depth, index_value);
if !index.is_valid() {
return Err(MerkleError::InvalidIndex(index));
}
let mut index = NodeIndex::new(self.depth(), index_value)?;
// we don't need to copy the pairs into a new address as we are logically guaranteed to not
// overlap write instructions. however, it's important to bind the lifetime of pairs to
@@ -146,13 +160,13 @@ impl MerkleTree {
// update the current node
let pos = index.to_scalar_index() as usize;
self.nodes[pos] = value;
self.nodes[pos] = value.into();
// traverse to the root, updating each node with the merged values of its parents
for _ in 0..index.depth() {
index.move_up();
let pos = index.to_scalar_index() as usize;
let value = Rpo256::merge(&pairs[pos]).into();
let value = Rpo256::merge(&pairs[pos]);
self.nodes[pos] = value;
}
@@ -160,7 +174,43 @@ impl MerkleTree {
}
}
/// Utility to vizualize a [MerkleTree] in text.
// ITERATORS
// ================================================================================================
/// An iterator over every inner node of the [MerkleTree].
///
/// Use this to extract the data of the tree, there is no guarantee on the order of the elements.
pub struct InnerNodeIterator<'a> {
nodes: &'a Vec<RpoDigest>,
index: usize,
}
impl<'a> Iterator for InnerNodeIterator<'a> {
type Item = InnerNodeInfo;
fn next(&mut self) -> Option<Self::Item> {
if self.index < self.nodes.len() / 2 {
let value = self.index;
let left = self.index * 2;
let right = left + 1;
self.index += 1;
Some(InnerNodeInfo {
value: self.nodes[value],
left: self.nodes[left],
right: self.nodes[right],
})
} else {
None
}
}
}
// UTILITY FUNCTIONS
// ================================================================================================
/// Utility to visualize a [MerkleTree] in text.
pub fn tree_to_text(tree: &MerkleTree) -> Result<String, fmt::Error> {
let indent = " ";
let mut s = String::new();
@@ -169,11 +219,8 @@ pub fn tree_to_text(tree: &MerkleTree) -> Result<String, fmt::Error> {
for d in 1..=tree.depth() {
let entries = 2u64.pow(d.into());
for i in 0..entries {
let index = NodeIndex::new(d, i);
let node = tree
.get_node(index)
.expect("The index must always be valid");
let index = NodeIndex::new(d, i).expect("The index must always be valid");
let node = tree.get_node(index).expect("The node must always be found");
for _ in 0..d {
s.push_str(indent);
@@ -186,7 +233,7 @@ pub fn tree_to_text(tree: &MerkleTree) -> Result<String, fmt::Error> {
Ok(s)
}
/// Utility to vizualize a [MerklePath] in text.
/// Utility to visualize a [MerklePath] in text.
pub fn path_to_text(path: &MerklePath) -> Result<String, fmt::Error> {
let mut s = String::new();
s.push('[');
@@ -212,18 +259,17 @@ pub fn path_to_text(path: &MerklePath) -> Result<String, fmt::Error> {
#[cfg(test)]
mod tests {
use super::*;
use crate::merkle::int_to_node;
use crate::{
merkle::{digests_to_words, int_to_leaf, int_to_node, InnerNodeInfo},
Felt, Word, WORD_SIZE,
};
use core::mem::size_of;
use proptest::prelude::*;
const LEAVES4: [Word; 4] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
];
const LEAVES4: [RpoDigest; WORD_SIZE] =
[int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
const LEAVES8: [Word; 8] = [
const LEAVES8: [RpoDigest; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
@@ -236,7 +282,7 @@ mod tests {
#[test]
fn build_merkle_tree() {
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
let tree = super::MerkleTree::new(digests_to_words(&LEAVES4)).unwrap();
assert_eq!(8, tree.nodes.len());
// leaves were copied correctly
@@ -255,58 +301,46 @@ mod tests {
#[test]
fn get_leaf() {
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
let tree = super::MerkleTree::new(digests_to_words(&LEAVES4)).unwrap();
// check depth 2
assert_eq!(LEAVES4[0], tree.get_node(NodeIndex::new(2, 0)).unwrap());
assert_eq!(LEAVES4[1], tree.get_node(NodeIndex::new(2, 1)).unwrap());
assert_eq!(LEAVES4[2], tree.get_node(NodeIndex::new(2, 2)).unwrap());
assert_eq!(LEAVES4[3], tree.get_node(NodeIndex::new(2, 3)).unwrap());
assert_eq!(LEAVES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(LEAVES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(LEAVES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(LEAVES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
// check depth 1
let (_, node2, node3) = compute_internal_nodes();
assert_eq!(node2, tree.get_node(NodeIndex::new(1, 0)).unwrap());
assert_eq!(node3, tree.get_node(NodeIndex::new(1, 1)).unwrap());
assert_eq!(node2, tree.get_node(NodeIndex::make(1, 0)).unwrap());
assert_eq!(node3, tree.get_node(NodeIndex::make(1, 1)).unwrap());
}
#[test]
fn get_path() {
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
let tree = super::MerkleTree::new(digests_to_words(&LEAVES4)).unwrap();
let (_, node2, node3) = compute_internal_nodes();
// check depth 2
assert_eq!(
vec![LEAVES4[1], node3],
*tree.get_path(NodeIndex::new(2, 0)).unwrap()
);
assert_eq!(
vec![LEAVES4[0], node3],
*tree.get_path(NodeIndex::new(2, 1)).unwrap()
);
assert_eq!(
vec![LEAVES4[3], node2],
*tree.get_path(NodeIndex::new(2, 2)).unwrap()
);
assert_eq!(
vec![LEAVES4[2], node2],
*tree.get_path(NodeIndex::new(2, 3)).unwrap()
);
assert_eq!(vec![LEAVES4[1], node3], *tree.get_path(NodeIndex::make(2, 0)).unwrap());
assert_eq!(vec![LEAVES4[0], node3], *tree.get_path(NodeIndex::make(2, 1)).unwrap());
assert_eq!(vec![LEAVES4[3], node2], *tree.get_path(NodeIndex::make(2, 2)).unwrap());
assert_eq!(vec![LEAVES4[2], node2], *tree.get_path(NodeIndex::make(2, 3)).unwrap());
// check depth 1
assert_eq!(vec![node3], *tree.get_path(NodeIndex::new(1, 0)).unwrap());
assert_eq!(vec![node2], *tree.get_path(NodeIndex::new(1, 1)).unwrap());
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
assert_eq!(vec![node2], *tree.get_path(NodeIndex::make(1, 1)).unwrap());
}
#[test]
fn update_leaf() {
let mut tree = super::MerkleTree::new(LEAVES8.to_vec()).unwrap();
let mut tree = super::MerkleTree::new(digests_to_words(&LEAVES8)).unwrap();
// update one leaf
let value = 3;
let new_node = int_to_node(9);
let mut expected_leaves = LEAVES8.to_vec();
let new_node = int_to_leaf(9);
let mut expected_leaves = digests_to_words(&LEAVES8);
expected_leaves[value as usize] = new_node;
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
@@ -315,7 +349,7 @@ mod tests {
// update another leaf
let value = 6;
let new_node = int_to_node(10);
let new_node = int_to_leaf(10);
expected_leaves[value as usize] = new_node;
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
@@ -323,6 +357,40 @@ mod tests {
assert_eq!(expected_tree.nodes, tree.nodes);
}
#[test]
fn nodes() -> Result<(), MerkleError> {
let tree = super::MerkleTree::new(digests_to_words(&LEAVES4)).unwrap();
let root = tree.root();
let l1n0 = tree.get_node(NodeIndex::make(1, 0))?;
let l1n1 = tree.get_node(NodeIndex::make(1, 1))?;
let l2n0 = tree.get_node(NodeIndex::make(2, 0))?;
let l2n1 = tree.get_node(NodeIndex::make(2, 1))?;
let l2n2 = tree.get_node(NodeIndex::make(2, 2))?;
let l2n3 = tree.get_node(NodeIndex::make(2, 3))?;
let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect();
let expected = vec![
InnerNodeInfo {
value: root,
left: l1n0,
right: l1n1,
},
InnerNodeInfo {
value: l1n0,
left: l2n0,
right: l2n1,
},
InnerNodeInfo {
value: l1n1,
left: l2n2,
right: l2n3,
},
];
assert_eq!(nodes, expected);
Ok(())
}
proptest! {
#[test]
fn arbitrary_word_can_be_represented_as_digest(
@@ -340,8 +408,8 @@ mod tests {
let digest = RpoDigest::from(word);
// assert the addresses are different
let word_ptr = (&word).as_ptr() as *const u8;
let digest_ptr = (&digest).as_ptr() as *const u8;
let word_ptr = word.as_ptr() as *const u8;
let digest_ptr = digest.as_ptr() as *const u8;
assert_ne!(word_ptr, digest_ptr);
// compare the bytes representation
@@ -354,11 +422,13 @@ mod tests {
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn compute_internal_nodes() -> (Word, Word, Word) {
let node2 = Rpo256::hash_elements(&[LEAVES4[0], LEAVES4[1]].concat());
let node3 = Rpo256::hash_elements(&[LEAVES4[2], LEAVES4[3]].concat());
fn compute_internal_nodes() -> (RpoDigest, RpoDigest, RpoDigest) {
let node2 =
Rpo256::hash_elements(&[Word::from(LEAVES4[0]), Word::from(LEAVES4[1])].concat());
let node3 =
Rpo256::hash_elements(&[Word::from(LEAVES4[2]), Word::from(LEAVES4[3])].concat());
let root = Rpo256::merge(&[node2, node3]);
(root.into(), node2.into(), node3.into())
(root, node2, node3)
}
}

View File

@@ -1,4 +1,7 @@
use super::{super::Vec, MmrProof, Rpo256, Word};
use super::{
super::{RpoDigest, Vec, ZERO},
Felt, MmrProof, Rpo256, Word,
};
#[derive(Debug, Clone, PartialEq)]
pub struct MmrPeaks {
@@ -8,37 +11,80 @@ pub struct MmrPeaks {
/// the MMR has a power-of-two number of leaves there is a single peak.
///
/// Every tree in the MMR forest has a distinct power-of-two size, this means only the right
/// most tree can have an odd number of elements (1). Additionally this means that the bits in
/// most tree can have an odd number of elements (e.g. `1`). Additionally this means that the bits in
/// `num_leaves` conveniently encode the size of each individual tree.
///
/// Examples:
///
/// Example 1: With 5 leaves, the binary 0b101. The number of set bits is equal the number
/// of peaks, in this case there are 2 peaks. The 0-indexed least-significant position of
/// the bit determines the number of elements of a tree, so the rightmost tree has 2**0
/// elements and the left most has 2**2.
///
/// Example 2: With 12 leaves, the binary is 0b1100, this case also has 2 peaks, the
/// leftmost tree has 2**3=8 elements, and the right most has 2**2=4 elements.
/// - With 5 leaves, the binary `0b101`. The number of set bits is equal the number
/// of peaks, in this case there are 2 peaks. The 0-indexed least-significant position of
/// the bit determines the number of elements of a tree, so the rightmost tree has `2**0`
/// elements and the left most has `2**2`.
/// - With 12 leaves, the binary is `0b1100`, this case also has 2 peaks, the
/// leftmost tree has `2**3=8` elements, and the right most has `2**2=4` elements.
pub num_leaves: usize,
/// All the peaks of every tree in the MMR forest. The peaks are always ordered by number of
/// leaves, starting from the peak with most children, to the one with least.
///
/// Invariant: The length of `peaks` must be equal to the number of true bits in `num_leaves`.
pub peaks: Vec<Word>,
pub peaks: Vec<RpoDigest>,
}
impl MmrPeaks {
/// Hashes the peaks sequentially, compacting it to a single digest
/// Hashes the peaks.
///
/// The procedure will:
/// - Flatten and pad the peaks to a vector of Felts.
/// - Hash the vector of Felts.
pub fn hash_peaks(&self) -> Word {
Rpo256::hash_elements(&self.peaks.as_slice().concat()).into()
Rpo256::hash_elements(&self.flatten_and_pad_peaks()).into()
}
pub fn verify(&self, value: Word, opening: MmrProof) -> bool {
pub fn verify(&self, value: RpoDigest, opening: MmrProof) -> bool {
let root = &self.peaks[opening.peak_index()];
opening
.merkle_path
.verify(opening.relative_pos() as u64, value, root)
opening.merkle_path.verify(opening.relative_pos() as u64, value, root)
}
/// Flattens and pads the peaks to make hashing inside of the Miden VM easier.
///
/// The procedure will:
/// - Flatten the vector of Words into a vector of Felts.
/// - Pad the peaks with ZERO to an even number of words, this removes the need to handle RPO
/// padding.
/// - Pad the peaks to a minimum length of 16 words, which reduces the constant cost of
/// hashing.
pub fn flatten_and_pad_peaks(&self) -> Vec<Felt> {
let num_peaks = self.peaks.len();
// To achieve the padding rules above we calculate the length of the final vector.
// This is calculated as the number of field elements. Each peak is 4 field elements.
// The length is calculated as follows:
// - If there are less than 16 peaks, the data is padded to 16 peaks and as such requires
// 64 field elements.
// - If there are more than 16 peaks and the number of peaks is odd, the data is padded to
// an even number of peaks and as such requires `(num_peaks + 1) * 4` field elements.
// - If there are more than 16 peaks and the number of peaks is even, the data is not padded
// and as such requires `num_peaks * 4` field elements.
let len = if num_peaks < 16 {
64
} else if num_peaks % 2 == 1 {
(num_peaks + 1) * 4
} else {
num_peaks * 4
};
let mut elements = Vec::with_capacity(len);
elements.extend_from_slice(
&self
.peaks
.as_slice()
.iter()
.map(|digest| digest.into())
.collect::<Vec<Word>>()
.concat(),
);
elements.resize(len, ZERO);
elements
}
}

View File

@@ -10,9 +10,11 @@
//! depths, i.e. as part of adding adding a new element to the forest the trees with same depth are
//! merged, creating a new tree with depth d+1, this process is continued until the property is
//! restabilished.
use super::bit::TrueBitPositionIterator;
use super::{super::Vec, MmrPeaks, MmrProof, Rpo256, Word};
use crate::merkle::MerklePath;
use super::{
super::{InnerNodeInfo, MerklePath, RpoDigest, Vec},
bit::TrueBitPositionIterator,
MmrPeaks, MmrProof, Rpo256,
};
use core::fmt::{Display, Formatter};
#[cfg(feature = "std")]
@@ -26,6 +28,7 @@ use std::error::Error;
///
/// Since this is a full representation of the MMR, elements are never removed and the MMR will
/// grow roughly `O(2n)` in number of leaf elements.
#[derive(Debug, Clone)]
pub struct Mmr {
/// Refer to the `forest` method documentation for details of the semantics of this value.
pub(super) forest: usize,
@@ -36,7 +39,7 @@ pub struct Mmr {
/// the elements of every tree in the forest to be stored in the same sequential buffer. It
/// also means new elements can be added to the forest, and merging of trees is very cheap with
/// no need to copy elements.
pub(super) nodes: Vec<Word>,
pub(super) nodes: Vec<RpoDigest>,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
@@ -127,7 +130,7 @@ impl Mmr {
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
/// has position 0, the second position 1, and so on.
pub fn get(&self, pos: usize) -> Result<Word, MmrError> {
pub fn get(&self, pos: usize) -> Result<RpoDigest, MmrError> {
// find the target tree responsible for the MMR position
let tree_bit =
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
@@ -151,7 +154,7 @@ impl Mmr {
}
/// Adds a new element to the MMR.
pub fn add(&mut self, el: Word) {
pub fn add(&mut self, el: RpoDigest) {
// Note: every node is also a tree of size 1, adding an element to the forest creates a new
// rooted-tree of size 1. This may temporarily break the invariant that every tree in the
// forest has different sizes, the loop below will eagerly merge trees of same size and
@@ -162,7 +165,7 @@ impl Mmr {
let mut right = el;
let mut left_tree = 1;
while self.forest & left_tree != 0 {
right = *Rpo256::merge(&[self.nodes[left_offset].into(), right.into()]);
right = Rpo256::merge(&[self.nodes[left_offset], right]);
self.nodes.push(right);
left_offset = left_offset.saturating_sub(nodes_in_forest(left_tree));
@@ -172,9 +175,9 @@ impl Mmr {
self.forest += 1;
}
/// Returns an accumulator representing the current state of the MMMR.
/// Returns an accumulator representing the current state of the MMR.
pub fn accumulator(&self) -> MmrPeaks {
let peaks: Vec<Word> = TrueBitPositionIterator::new(self.forest)
let peaks: Vec<RpoDigest> = TrueBitPositionIterator::new(self.forest)
.rev()
.map(|bit| nodes_in_forest(1 << bit))
.scan(0, |offset, el| {
@@ -190,6 +193,16 @@ impl Mmr {
}
}
/// An iterator over inner nodes in the MMR. The order of iteration is unspecified.
pub fn inner_nodes(&self) -> MmrNodes {
MmrNodes {
mmr: self,
forest: 0,
last_right: 0,
index: 0,
}
}
// UTILITIES
// ============================================================================================
@@ -200,7 +213,7 @@ impl Mmr {
relative_pos: usize,
index_offset: usize,
mut index: usize,
) -> (Word, Vec<Word>) {
) -> (RpoDigest, Vec<RpoDigest>) {
// collect the Merkle path
let mut tree_depth = tree_bit as usize;
let mut path = Vec::with_capacity(tree_depth + 1);
@@ -235,7 +248,7 @@ impl Mmr {
impl<T> From<T> for Mmr
where
T: IntoIterator<Item = Word>,
T: IntoIterator<Item = RpoDigest>,
{
fn from(values: T) -> Self {
let mut mmr = Mmr::new();
@@ -246,6 +259,84 @@ where
}
}
// ITERATOR
// ===============================================================================================
/// Yields inner nodes of the [Mmr].
pub struct MmrNodes<'a> {
/// [Mmr] being yielded, when its `forest` value is matched, the iterations is finished.
mmr: &'a Mmr,
/// Keeps track of the left nodes yielded so far waiting for a right pair, this matches the
/// semantics of the [Mmr]'s forest attribute, since that too works as a buffer of left nodes
/// waiting for a pair to be hashed together.
forest: usize,
/// Keeps track of the last right node yielded, after this value is set, the next iteration
/// will be its parent with its corresponding left node that has been yield already.
last_right: usize,
/// The current index in the `nodes` vector.
index: usize,
}
impl<'a> Iterator for MmrNodes<'a> {
type Item = InnerNodeInfo;
fn next(&mut self) -> Option<Self::Item> {
debug_assert!(self.last_right.count_ones() <= 1, "last_right tracks zero or one element");
// only parent nodes are emitted, remove the single node tree from the forest
let target = self.mmr.forest & (usize::MAX << 1);
if self.forest < target {
if self.last_right == 0 {
// yield the left leaf
debug_assert!(self.last_right == 0, "left must be before right");
self.forest |= 1;
self.index += 1;
// yield the right leaf
debug_assert!((self.forest & 1) == 1, "right must be after left");
self.last_right |= 1;
self.index += 1;
};
debug_assert!(
self.forest & self.last_right != 0,
"parent requires both a left and right",
);
// compute the number of nodes in the right tree, this is the offset to the
// previous left parent
let right_nodes = nodes_in_forest(self.last_right);
// the next parent position is one above the position of the pair
let parent = self.last_right << 1;
// the left node has been paired and the current parent yielded, removed it from the forest
self.forest ^= self.last_right;
if self.forest & parent == 0 {
// this iteration yielded the left parent node
debug_assert!(self.forest & 1 == 0, "next iteration yields a left leaf");
self.last_right = 0;
self.forest ^= parent;
} else {
// the left node of the parent level has been yielded already, this iteration
// was the right parent. Next iteration yields their parent.
self.last_right = parent;
}
// yields a parent
let value = self.mmr.nodes[self.index];
let right = self.mmr.nodes[self.index - 1];
let left = self.mmr.nodes[self.index - 1 - right_nodes];
self.index += 1;
let node = InnerNodeInfo { value, left, right };
Some(node)
} else {
None
}
}
}
// UTILITIES
// ===============================================================================================

View File

@@ -6,7 +6,7 @@ mod proof;
#[cfg(test)]
mod tests;
use super::{Rpo256, Word};
use super::{Felt, Rpo256, Word};
// REEXPORTS
// ================================================================================================

View File

@@ -1,7 +1,14 @@
use super::bit::TrueBitPositionIterator;
use super::full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest};
use super::{super::Vec, Mmr, Rpo256, Word};
use crate::merkle::{int_to_node, MerklePath};
use super::{
super::{InnerNodeInfo, Vec},
bit::TrueBitPositionIterator,
full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest},
Mmr, MmrPeaks, Rpo256,
};
use crate::{
hash::rpo::RpoDigest,
merkle::{int_to_node, MerklePath},
Felt, Word,
};
#[test]
fn test_position_equal_or_higher_than_leafs_is_never_contained() {
@@ -96,7 +103,7 @@ fn test_nodes_in_forest_single_bit() {
}
}
const LEAVES: [Word; 7] = [
const LEAVES: [RpoDigest; 7] = [
int_to_node(0),
int_to_node(1),
int_to_node(2),
@@ -111,16 +118,14 @@ fn test_mmr_simple() {
let mut postorder = Vec::new();
postorder.push(LEAVES[0]);
postorder.push(LEAVES[1]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat()));
postorder.push(Rpo256::merge(&[LEAVES[0], LEAVES[1]]));
postorder.push(LEAVES[2]);
postorder.push(LEAVES[3]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat()));
postorder.push(*Rpo256::hash_elements(
&[postorder[2], postorder[5]].concat(),
));
postorder.push(Rpo256::merge(&[LEAVES[2], LEAVES[3]]));
postorder.push(Rpo256::merge(&[postorder[2], postorder[5]]));
postorder.push(LEAVES[4]);
postorder.push(LEAVES[5]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat()));
postorder.push(Rpo256::merge(&[LEAVES[4], LEAVES[5]]));
postorder.push(LEAVES[6]);
let mut mmr = Mmr::new();
@@ -194,14 +199,11 @@ fn test_mmr_simple() {
#[test]
fn test_mmr_open() {
let mmr: Mmr = LEAVES.into();
let h01: Word = Rpo256::hash_elements(&LEAVES[0..2].concat()).into();
let h23: Word = Rpo256::hash_elements(&LEAVES[2..4].concat()).into();
let h01 = Rpo256::merge(&[LEAVES[0], LEAVES[1]]);
let h23 = Rpo256::merge(&[LEAVES[2], LEAVES[3]]);
// node at pos 7 is the root
assert!(
mmr.open(7).is_err(),
"Element 7 is not in the tree, result should be None"
);
assert!(mmr.open(7).is_err(), "Element 7 is not in the tree, result should be None");
// node at pos 6 is the root
let empty: MerklePath = MerklePath::new(vec![]);
@@ -216,7 +218,7 @@ fn test_mmr_open() {
"MmrProof should be valid for the current accumulator."
);
// nodes 4,5 are detph 1
// nodes 4,5 are depth 1
let root_to_path = MerklePath::new(vec![LEAVES[4]]);
let opening = mmr
.open(5)
@@ -294,41 +296,13 @@ fn test_mmr_open() {
#[test]
fn test_mmr_get() {
let mmr: Mmr = LEAVES.into();
assert_eq!(
mmr.get(0).unwrap(),
LEAVES[0],
"value at pos 0 must correspond"
);
assert_eq!(
mmr.get(1).unwrap(),
LEAVES[1],
"value at pos 1 must correspond"
);
assert_eq!(
mmr.get(2).unwrap(),
LEAVES[2],
"value at pos 2 must correspond"
);
assert_eq!(
mmr.get(3).unwrap(),
LEAVES[3],
"value at pos 3 must correspond"
);
assert_eq!(
mmr.get(4).unwrap(),
LEAVES[4],
"value at pos 4 must correspond"
);
assert_eq!(
mmr.get(5).unwrap(),
LEAVES[5],
"value at pos 5 must correspond"
);
assert_eq!(
mmr.get(6).unwrap(),
LEAVES[6],
"value at pos 6 must correspond"
);
assert_eq!(mmr.get(0).unwrap(), LEAVES[0], "value at pos 0 must correspond");
assert_eq!(mmr.get(1).unwrap(), LEAVES[1], "value at pos 1 must correspond");
assert_eq!(mmr.get(2).unwrap(), LEAVES[2], "value at pos 2 must correspond");
assert_eq!(mmr.get(3).unwrap(), LEAVES[3], "value at pos 3 must correspond");
assert_eq!(mmr.get(4).unwrap(), LEAVES[4], "value at pos 4 must correspond");
assert_eq!(mmr.get(5).unwrap(), LEAVES[5], "value at pos 5 must correspond");
assert_eq!(mmr.get(6).unwrap(), LEAVES[6], "value at pos 6 must correspond");
assert!(mmr.get(7).is_err());
}
@@ -338,11 +312,7 @@ fn test_mmr_invariants() {
for v in 1..=1028 {
mmr.add(int_to_node(v));
let accumulator = mmr.accumulator();
assert_eq!(
v as usize,
mmr.forest(),
"MMR leaf count must increase by one on every add"
);
assert_eq!(v as usize, mmr.forest(), "MMR leaf count must increase by one on every add");
assert_eq!(
v as usize, accumulator.num_leaves,
"MMR and its accumulator must match leaves count"
@@ -371,45 +341,120 @@ fn test_bit_position_iterator() {
assert_eq!(TrueBitPositionIterator::new(0).count(), 0);
assert_eq!(TrueBitPositionIterator::new(0).rev().count(), 0);
assert_eq!(
TrueBitPositionIterator::new(1).collect::<Vec<u32>>(),
vec![0]
);
assert_eq!(
TrueBitPositionIterator::new(1).rev().collect::<Vec<u32>>(),
vec![0],
);
assert_eq!(TrueBitPositionIterator::new(1).collect::<Vec<u32>>(), vec![0]);
assert_eq!(TrueBitPositionIterator::new(1).rev().collect::<Vec<u32>>(), vec![0],);
assert_eq!(
TrueBitPositionIterator::new(2).collect::<Vec<u32>>(),
vec![1]
);
assert_eq!(
TrueBitPositionIterator::new(2).rev().collect::<Vec<u32>>(),
vec![1],
);
assert_eq!(TrueBitPositionIterator::new(2).collect::<Vec<u32>>(), vec![1]);
assert_eq!(TrueBitPositionIterator::new(2).rev().collect::<Vec<u32>>(), vec![1],);
assert_eq!(
TrueBitPositionIterator::new(3).collect::<Vec<u32>>(),
vec![0, 1],
);
assert_eq!(
TrueBitPositionIterator::new(3).rev().collect::<Vec<u32>>(),
vec![1, 0],
);
assert_eq!(TrueBitPositionIterator::new(3).collect::<Vec<u32>>(), vec![0, 1],);
assert_eq!(TrueBitPositionIterator::new(3).rev().collect::<Vec<u32>>(), vec![1, 0],);
assert_eq!(
TrueBitPositionIterator::new(0b11010101).collect::<Vec<u32>>(),
vec![0, 2, 4, 6, 7],
);
assert_eq!(
TrueBitPositionIterator::new(0b11010101)
.rev()
.collect::<Vec<u32>>(),
TrueBitPositionIterator::new(0b11010101).rev().collect::<Vec<u32>>(),
vec![7, 6, 4, 2, 0],
);
}
#[test]
fn test_mmr_inner_nodes() {
let mmr: Mmr = LEAVES.into();
let nodes: Vec<InnerNodeInfo> = mmr.inner_nodes().collect();
let h01 = Rpo256::merge(&[LEAVES[0], LEAVES[1]]);
let h23 = Rpo256::merge(&[LEAVES[2], LEAVES[3]]);
let h0123 = Rpo256::merge(&[h01, h23]);
let h45 = Rpo256::merge(&[LEAVES[4], LEAVES[5]]);
let postorder = vec![
InnerNodeInfo {
value: h01,
left: LEAVES[0],
right: LEAVES[1],
},
InnerNodeInfo {
value: h23,
left: LEAVES[2],
right: LEAVES[3],
},
InnerNodeInfo {
value: h0123,
left: h01,
right: h23,
},
InnerNodeInfo {
value: h45,
left: LEAVES[4],
right: LEAVES[5],
},
];
assert_eq!(postorder, nodes);
}
#[test]
fn test_mmr_hash_peaks() {
let mmr: Mmr = LEAVES.into();
let peaks = mmr.accumulator();
let first_peak = Rpo256::merge(&[
Rpo256::merge(&[LEAVES[0], LEAVES[1]]),
Rpo256::merge(&[LEAVES[2], LEAVES[3]]),
]);
let second_peak = Rpo256::merge(&[LEAVES[4], LEAVES[5]]);
let third_peak = LEAVES[6];
// minimum length is 16
let mut expected_peaks = [first_peak, second_peak, third_peak].to_vec();
expected_peaks.resize(16, RpoDigest::default());
assert_eq!(
peaks.hash_peaks(),
*Rpo256::hash_elements(&digests_to_elements(&expected_peaks))
);
}
#[test]
fn test_mmr_peaks_hash_less_than_16() {
let mut peaks = Vec::new();
for i in 0..16 {
peaks.push(int_to_node(i));
let accumulator = MmrPeaks {
num_leaves: (1 << peaks.len()) - 1,
peaks: peaks.clone(),
};
// minimum length is 16
let mut expected_peaks = peaks.clone();
expected_peaks.resize(16, RpoDigest::default());
assert_eq!(
accumulator.hash_peaks(),
*Rpo256::hash_elements(&digests_to_elements(&expected_peaks))
);
}
}
#[test]
fn test_mmr_peaks_hash_odd() {
let peaks: Vec<_> = (0..=17).map(int_to_node).collect();
let accumulator = MmrPeaks {
num_leaves: (1 << peaks.len()) - 1,
peaks: peaks.clone(),
};
// odd length bigger than 16 is padded to the next even number
let mut expected_peaks = peaks;
expected_peaks.resize(18, RpoDigest::default());
assert_eq!(
accumulator.hash_peaks(),
*Rpo256::hash_elements(&digests_to_elements(&expected_peaks))
);
}
mod property_tests {
use super::leaf_to_corresponding_tree;
use proptest::prelude::*;
@@ -438,3 +483,10 @@ mod property_tests {
}
}
}
// HELPER FUNCTIONS
// ================================================================================================
fn digests_to_elements(digests: &[RpoDigest]) -> Vec<Felt> {
digests.iter().flat_map(Word::from).collect()
}

View File

@@ -1,6 +1,6 @@
use super::{
hash::rpo::{Rpo256, RpoDigest},
utils::collections::{vec, BTreeMap, BTreeSet, Vec},
utils::collections::{vec, BTreeMap, BTreeSet, KvMap, RecordingMap, Vec},
Felt, StarkField, Word, WORD_SIZE, ZERO,
};
use core::fmt;
@@ -26,28 +26,39 @@ pub use path_set::MerklePathSet;
mod simple_smt;
pub use simple_smt::SimpleSmt;
mod tiered_smt;
pub use tiered_smt::TieredSmt;
mod mmr;
pub use mmr::{Mmr, MmrPeaks};
pub use mmr::{Mmr, MmrPeaks, MmrProof};
mod store;
pub use store::MerkleStore;
pub use store::{DefaultMerkleStore, MerkleStore, RecordingMerkleStore, StoreNode};
mod node;
pub use node::InnerNodeInfo;
mod partial_mt;
pub use partial_mt::PartialMerkleTree;
// ERRORS
// ================================================================================================
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum MerkleError {
ConflictingRoots(Vec<Word>),
ConflictingRoots(Vec<RpoDigest>),
DepthTooSmall(u8),
DepthTooBig(u64),
NodeNotInStore(Word, NodeIndex),
NumLeavesNotPowerOfTwo(usize),
InvalidIndex(NodeIndex),
DuplicateValuesForIndex(u64),
DuplicateValuesForKey(RpoDigest),
InvalidIndex { depth: u8, value: u64 },
InvalidDepth { expected: u8, provided: u8 },
InvalidPath(MerklePath),
InvalidEntriesCount(usize, usize),
NodeNotInSet(u64),
RootNotInStore(Word),
InvalidNumEntries(usize, usize),
NodeNotInSet(NodeIndex),
NodeNotInStore(RpoDigest, NodeIndex),
NumLeavesNotPowerOfTwo(usize),
RootNotInStore(RpoDigest),
}
impl fmt::Display for MerkleError {
@@ -57,21 +68,23 @@ impl fmt::Display for MerkleError {
ConflictingRoots(roots) => write!(f, "the merkle paths roots do not match {roots:?}"),
DepthTooSmall(depth) => write!(f, "the provided depth {depth} is too small"),
DepthTooBig(depth) => write!(f, "the provided depth {depth} is too big"),
NumLeavesNotPowerOfTwo(leaves) => {
write!(f, "the leaves count {leaves} is not a power of 2")
}
InvalidIndex(index) => write!(
DuplicateValuesForIndex(key) => write!(f, "multiple values provided for key {key}"),
DuplicateValuesForKey(key) => write!(f, "multiple values provided for key {key}"),
InvalidIndex{ depth, value} => write!(
f,
"the index value {} is not valid for the depth {}", index.value(), index.depth()
"the index value {value} is not valid for the depth {depth}"
),
InvalidDepth { expected, provided } => write!(
f,
"the provided depth {provided} is not valid for {expected}"
),
InvalidPath(_path) => write!(f, "the provided path is not valid"),
InvalidEntriesCount(max, provided) => write!(f, "the provided number of entries is {provided}, but the maximum for the given depth is {max}"),
NodeNotInSet(index) => write!(f, "the node indexed by {index} is not in the set"),
NodeNotInStore(hash, index) => write!(f, "the node {:?} indexed by {} and depth {} is not in the store", hash, index.value(), index.depth(),),
InvalidNumEntries(max, provided) => write!(f, "the provided number of entries is {provided}, but the maximum for the given depth is {max}"),
NodeNotInSet(index) => write!(f, "the node with index ({index}) is not in the set"),
NodeNotInStore(hash, index) => write!(f, "the node {hash:?} with index ({index}) is not in the store"),
NumLeavesNotPowerOfTwo(leaves) => {
write!(f, "the leaves count {leaves} is not a power of 2")
}
RootNotInStore(root) => write!(f, "the root {:?} is not in the store", root),
}
}
@@ -84,6 +97,16 @@ impl std::error::Error for MerkleError {}
// ================================================================================================
#[cfg(test)]
const fn int_to_node(value: u64) -> Word {
const fn int_to_node(value: u64) -> RpoDigest {
RpoDigest::new([Felt::new(value), ZERO, ZERO, ZERO])
}
#[cfg(test)]
const fn int_to_leaf(value: u64) -> Word {
[Felt::new(value), ZERO, ZERO, ZERO]
}
#[cfg(test)]
fn digests_to_words(digests: &[RpoDigest]) -> Vec<Word> {
digests.iter().map(|d| d.into()).collect()
}

9
src/merkle/node.rs Normal file
View File

@@ -0,0 +1,9 @@
use crate::hash::rpo::RpoDigest;
/// Representation of a node with two children used for iterating over containers.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InnerNodeInfo {
pub value: RpoDigest,
pub left: RpoDigest,
pub right: RpoDigest,
}

View File

@@ -0,0 +1,329 @@
use super::{
BTreeMap, BTreeSet, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, ValuePath, Vec, ZERO,
};
use crate::utils::{format, string::String, word_to_hex};
use core::fmt;
#[cfg(test)]
mod tests;
// CONSTANTS
// ================================================================================================
/// Index of the root node.
const ROOT_INDEX: NodeIndex = NodeIndex::root();
/// An RpoDigest consisting of 4 ZERO elements.
const EMPTY_DIGEST: RpoDigest = RpoDigest::new([ZERO; 4]);
// PARTIAL MERKLE TREE
// ================================================================================================
/// A partial Merkle tree with NodeIndex keys and 4-element RpoDigest leaf values. Partial Merkle
/// Tree allows to create Merkle Tree by providing Merkle paths of different lengths.
///
/// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct PartialMerkleTree {
max_depth: u8,
nodes: BTreeMap<NodeIndex, RpoDigest>,
leaves: BTreeSet<NodeIndex>,
}
impl Default for PartialMerkleTree {
fn default() -> Self {
Self::new()
}
}
impl PartialMerkleTree {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// Minimum supported depth.
pub const MIN_DEPTH: u8 = 1;
/// Maximum supported depth.
pub const MAX_DEPTH: u8 = 64;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new empty [PartialMerkleTree].
pub fn new() -> Self {
PartialMerkleTree {
max_depth: 0,
nodes: BTreeMap::new(),
leaves: BTreeSet::new(),
}
}
/// Appends the provided paths iterator into the set.
///
/// Analogous to [Self::add_path].
pub fn with_paths<I>(paths: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = (u64, RpoDigest, MerklePath)>,
{
// create an empty tree
let tree = PartialMerkleTree::new();
paths.into_iter().try_fold(tree, |mut tree, (index, value, path)| {
tree.add_path(index, value, path)?;
Ok(tree)
})
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub fn root(&self) -> RpoDigest {
self.nodes.get(&ROOT_INDEX).cloned().unwrap_or(EMPTY_DIGEST)
}
/// Returns the depth of this Merkle tree.
pub fn max_depth(&self) -> u8 {
self.max_depth
}
/// Returns a node at the specified NodeIndex.
///
/// # Errors
/// Returns an error if the specified NodeIndex is not contained in the nodes map.
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
self.nodes.get(&index).ok_or(MerkleError::NodeNotInSet(index)).map(|hash| *hash)
}
/// Returns true if provided index contains in the leaves set, false otherwise.
pub fn is_leaf(&self, index: NodeIndex) -> bool {
self.leaves.contains(&index)
}
/// Returns a vector of paths from every leaf to the root.
pub fn paths(&self) -> Vec<(NodeIndex, ValuePath)> {
let mut paths = Vec::new();
self.leaves.iter().for_each(|&leaf| {
paths.push((
leaf,
ValuePath {
value: self.get_node(leaf).expect("Failed to get leaf node"),
path: self.get_path(leaf).expect("Failed to get path"),
},
));
});
paths
}
/// Returns a Merkle path from the node at the specified index to the root.
///
/// The node itself is not included in the path.
///
/// # Errors
/// Returns an error if:
/// - the specified index has depth set to 0 or the depth is greater than the depth of this
/// Merkle tree.
/// - the specified index is not contained in the nodes map.
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > self.max_depth() {
return Err(MerkleError::DepthTooBig(index.depth() as u64));
}
if !self.nodes.contains_key(&index) {
return Err(MerkleError::NodeNotInSet(index));
}
let mut path = Vec::new();
for _ in 0..index.depth() {
let sibling_index = index.sibling();
index.move_up();
let sibling =
self.nodes.get(&sibling_index).cloned().expect("Sibling node not in the map");
path.push(sibling);
}
Ok(MerklePath::new(path))
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the leaves of this [PartialMerkleTree].
pub fn leaves(&self) -> impl Iterator<Item = (NodeIndex, RpoDigest)> + '_ {
self.leaves.iter().map(|&leaf| {
(
leaf,
self.get_node(leaf)
.unwrap_or_else(|_| panic!("Leaf with {leaf} is not in the nodes map")),
)
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Adds the nodes of the specified Merkle path to this [PartialMerkleTree]. The `index_value`
/// and `value` parameters specify the leaf node at which the path starts.
///
/// # Errors
/// Returns an error if:
/// - The depth of the specified node_index is greater than 64 or smaller than 1.
/// - The specified path is not consistent with other paths in the set (i.e., resolves to a
/// different root).
pub fn add_path(
&mut self,
index_value: u64,
value: RpoDigest,
path: MerklePath,
) -> Result<(), MerkleError> {
let index_value = NodeIndex::new(path.len() as u8, index_value)?;
Self::check_depth(index_value.depth())?;
self.update_depth(index_value.depth());
// add provided node and its sibling to the leaves set
self.leaves.insert(index_value);
let sibling_node_index = index_value.sibling();
self.leaves.insert(sibling_node_index);
// add provided node and its sibling to the nodes map
self.nodes.insert(index_value, value);
self.nodes.insert(sibling_node_index, path[0]);
// traverse to the root, updating the nodes
let mut index_value = index_value;
let node = Rpo256::merge(&index_value.build_node(value, path[0]));
let root = path.iter().skip(1).copied().fold(node, |node, hash| {
index_value.move_up();
// insert calculated node to the nodes map
self.nodes.insert(index_value, node);
// if the calculated node was a leaf, remove it from leaves set.
self.leaves.remove(&index_value);
let sibling_node = index_value.sibling();
// Insert node from Merkle path to the nodes map. This sibling node becomes a leaf only
// if it is a new node (it wasn't in nodes map).
// Node can be in 3 states: internal node, leaf of the tree and not a tree node at all.
// - Internal node can only stay in this state -- addition of a new path can't make it
// a leaf or remove it from the tree.
// - Leaf node can stay in the same state (remain a leaf) or can become an internal
// node. In the first case we don't need to do anything, and the second case is handled
// by the call of `self.leaves.remove(&index_value);`
// - New node can be a calculated node or a "sibling" node from a Merkle Path:
// --- Calculated node, obviously, never can be a leaf.
// --- Sibling node can be only a leaf, because otherwise it is not a new node.
if self.nodes.insert(sibling_node, hash).is_none() {
self.leaves.insert(sibling_node);
}
Rpo256::merge(&index_value.build_node(node, hash))
});
// if the path set is empty (the root is all ZEROs), set the root to the root of the added
// path; otherwise, the root of the added path must be identical to the current root
if self.root() == EMPTY_DIGEST {
self.nodes.insert(ROOT_INDEX, root);
} else if self.root() != root {
return Err(MerkleError::ConflictingRoots([self.root(), root].to_vec()));
}
Ok(())
}
/// Updates value of the leaf at the specified index returning the old leaf value.
///
/// This also recomputes all hashes between the leaf and the root, updating the root itself.
///
/// # Errors
/// Returns an error if:
/// - The depth of the specified node_index is greater than 64 or smaller than 1.
/// - The specified node index is not corresponding to the leaf.
pub fn update_leaf(
&mut self,
node_index: NodeIndex,
value: RpoDigest,
) -> Result<RpoDigest, MerkleError> {
// check correctness of the depth and update it
Self::check_depth(node_index.depth())?;
self.update_depth(node_index.depth());
// insert NodeIndex to the leaves Set
self.leaves.insert(node_index);
// add node value to the nodes Map
let old_value = self
.nodes
.insert(node_index, value)
.ok_or(MerkleError::NodeNotInSet(node_index))?;
// if the old value and new value are the same, there is nothing to update
if value == old_value {
return Ok(old_value);
}
let mut node_index = node_index;
let mut value = value;
for _ in 0..node_index.depth() {
let sibling = self.nodes.get(&node_index.sibling()).expect("sibling should exist");
value = Rpo256::merge(&node_index.build_node(value, *sibling));
node_index.move_up();
self.nodes.insert(node_index, value);
}
Ok(old_value)
}
// UTILITY FUNCTIONS
// --------------------------------------------------------------------------------------------
/// Utility to visualize a [PartialMerkleTree] in text.
pub fn print(&self) -> Result<String, fmt::Error> {
let indent = " ";
let mut s = String::new();
s.push_str("root: ");
s.push_str(&word_to_hex(&self.root())?);
s.push('\n');
for d in 1..=self.max_depth() {
let entries = 2u64.pow(d.into());
for i in 0..entries {
let index = NodeIndex::new(d, i).expect("The index must always be valid");
let node = self.get_node(index);
let node = match node {
Err(_) => continue,
Ok(node) => node,
};
for _ in 0..d {
s.push_str(indent);
}
s.push_str(&format!("({}, {}): ", index.depth(), index.value()));
s.push_str(&word_to_hex(&node)?);
s.push('\n');
}
}
Ok(s)
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
/// Updates depth value with the maximum of current and provided depth.
fn update_depth(&mut self, new_depth: u8) {
self.max_depth = new_depth.max(self.max_depth);
}
/// Returns an error if the depth is 0 or is greater than 64.
fn check_depth(depth: u8) -> Result<(), MerkleError> {
// validate the range of the depth.
if depth < Self::MIN_DEPTH {
return Err(MerkleError::DepthTooSmall(depth));
} else if Self::MAX_DEPTH < depth {
return Err(MerkleError::DepthTooBig(depth as u64));
}
Ok(())
}
}

View File

@@ -0,0 +1,313 @@
use super::{
super::{
digests_to_words, int_to_node, DefaultMerkleStore as MerkleStore, MerkleTree, NodeIndex,
PartialMerkleTree,
},
RpoDigest, ValuePath, Vec,
};
// TEST DATA
// ================================================================================================
const NODE10: NodeIndex = NodeIndex::new_unchecked(1, 0);
const NODE11: NodeIndex = NodeIndex::new_unchecked(1, 1);
const NODE20: NodeIndex = NodeIndex::new_unchecked(2, 0);
const NODE22: NodeIndex = NodeIndex::new_unchecked(2, 2);
const NODE23: NodeIndex = NodeIndex::new_unchecked(2, 3);
const NODE30: NodeIndex = NodeIndex::new_unchecked(3, 0);
const NODE31: NodeIndex = NodeIndex::new_unchecked(3, 1);
const NODE32: NodeIndex = NodeIndex::new_unchecked(3, 2);
const NODE33: NodeIndex = NodeIndex::new_unchecked(3, 3);
const VALUES8: [RpoDigest; 8] = [
int_to_node(30),
int_to_node(31),
int_to_node(32),
int_to_node(33),
int_to_node(34),
int_to_node(35),
int_to_node(36),
int_to_node(37),
];
// TESTS
// ================================================================================================
// For the Partial Merkle Tree tests we will use parts of the Merkle Tree which full form is
// illustrated below:
//
// __________ root __________
// / \
// ____ 10 ____ ____ 11 ____
// / \ / \
// 20 21 22 23
// / \ / \ / \ / \
// (30) (31) (32) (33) (34) (35) (36) (37)
//
// Where node number is a concatenation of its depth and index. For example, node with
// NodeIndex(3, 5) will be labeled as `35`. Leaves of the tree are shown as nodes with parenthesis
// (33).
/// Checks that root returned by `root()` function is equal to the expected one.
#[test]
fn get_root() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert_eq!(pmt.root(), expected_root);
}
/// This test checks correctness of the `add_path()` and `get_path()` functions. First it creates a
/// PMT using `add_path()` by adding Merkle Paths from node 33 and node 22 to the empty PMT. Then
/// it checks that paths returned by `get_path()` function are equal to the expected ones.
#[test]
fn add_and_get_paths() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let expected_path33 = ms.get_path(expected_root, NODE33).unwrap();
let expected_path22 = ms.get_path(expected_root, NODE22).unwrap();
let mut pmt = PartialMerkleTree::new();
pmt.add_path(3, expected_path33.value, expected_path33.path.clone()).unwrap();
pmt.add_path(2, expected_path22.value, expected_path22.path.clone()).unwrap();
let path33 = pmt.get_path(NODE33).unwrap();
let path22 = pmt.get_path(NODE22).unwrap();
let actual_root = pmt.root();
assert_eq!(expected_path33.path, path33);
assert_eq!(expected_path22.path, path22);
assert_eq!(expected_root, actual_root);
}
/// Checks that function `get_node` used on nodes 10 and 32 returns expected values.
#[test]
fn get_node() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert_eq!(ms.get_node(expected_root, NODE32).unwrap(), pmt.get_node(NODE32).unwrap());
assert_eq!(ms.get_node(expected_root, NODE10).unwrap(), pmt.get_node(NODE10).unwrap());
}
/// Updates leaves of the PMT using `update_leaf()` function and checks that new root of the tree
/// is equal to the expected one.
#[test]
fn update_leaf() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let root = mt.root();
let mut ms = MerkleStore::from(&mt);
let path33 = ms.get_path(root, NODE33).unwrap();
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
let new_value32 = int_to_node(132);
let expected_root = ms.set_node(root, NODE32, new_value32).unwrap().root;
pmt.update_leaf(NODE32, new_value32).unwrap();
let actual_root = pmt.root();
assert_eq!(expected_root, actual_root);
let new_value20 = int_to_node(120);
let expected_root = ms.set_node(expected_root, NODE20, new_value20).unwrap().root;
pmt.update_leaf(NODE20, new_value20).unwrap();
let actual_root = pmt.root();
assert_eq!(expected_root, actual_root);
}
/// Checks that paths of the PMT returned by `paths()` function are equal to the expected ones.
#[test]
fn get_paths() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let path22 = ms.get_path(expected_root, NODE22).unwrap();
let mut pmt = PartialMerkleTree::new();
pmt.add_path(3, path33.value, path33.path).unwrap();
pmt.add_path(2, path22.value, path22.path).unwrap();
// After PMT creation with path33 (33; 32, 20, 11) and path22 (22; 23, 10) we will have this
// tree:
//
// ______root______
// / \
// ___10___ ___11___
// / \ / \
// (20) 21 (22) (23)
// / \
// (32) (33)
//
// Which have leaf nodes 20, 22, 23, 32 and 33. Hence overall we will have 5 paths -- one path
// for each leaf.
let leaves = vec![NODE20, NODE22, NODE23, NODE32, NODE33];
let expected_paths: Vec<(NodeIndex, ValuePath)> = leaves
.iter()
.map(|&leaf| {
(
leaf,
ValuePath {
value: mt.get_node(leaf).unwrap(),
path: mt.get_path(leaf).unwrap(),
},
)
})
.collect();
let actual_paths = pmt.paths();
assert_eq!(expected_paths, actual_paths);
}
// Checks correctness of leaves determination when using the `leaves()` function.
#[test]
fn leaves() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let path22 = ms.get_path(expected_root, NODE22).unwrap();
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
// After PMT creation with path33 (33; 32, 20, 11) we will have this tree:
//
// ______root______
// / \
// ___10___ (11)
// / \
// (20) 21
// / \
// (32) (33)
//
// Which have leaf nodes 11, 20, 32 and 33.
let value11 = mt.get_node(NODE11).unwrap();
let value20 = mt.get_node(NODE20).unwrap();
let value32 = mt.get_node(NODE32).unwrap();
let value33 = mt.get_node(NODE33).unwrap();
let leaves = vec![(NODE11, value11), (NODE20, value20), (NODE32, value32), (NODE33, value33)];
let expected_leaves = leaves.iter().copied();
assert!(expected_leaves.eq(pmt.leaves()));
pmt.add_path(2, path22.value, path22.path).unwrap();
// After adding the path22 (22; 23, 10) to the existing PMT we will have this tree:
//
// ______root______
// / \
// ___10___ ___11___
// / \ / \
// (20) 21 (22) (23)
// / \
// (32) (33)
//
// Which have leaf nodes 20, 22, 23, 32 and 33.
let value20 = mt.get_node(NODE20).unwrap();
let value22 = mt.get_node(NODE22).unwrap();
let value23 = mt.get_node(NODE23).unwrap();
let value32 = mt.get_node(NODE32).unwrap();
let value33 = mt.get_node(NODE33).unwrap();
let leaves = vec![
(NODE20, value20),
(NODE22, value22),
(NODE23, value23),
(NODE32, value32),
(NODE33, value33),
];
let expected_leaves = leaves.iter().copied();
assert!(expected_leaves.eq(pmt.leaves()));
}
/// Checks that addition of the path with different root will cause an error.
#[test]
fn err_add_path() {
let path33 = vec![int_to_node(1), int_to_node(2), int_to_node(3)].into();
let path22 = vec![int_to_node(4), int_to_node(5)].into();
let mut pmt = PartialMerkleTree::new();
pmt.add_path(3, int_to_node(6), path33).unwrap();
assert!(pmt.add_path(2, int_to_node(7), path22).is_err());
}
/// Checks that the request of the node which is not in the PMT will cause an error.
#[test]
fn err_get_node() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert!(pmt.get_node(NODE22).is_err());
assert!(pmt.get_node(NODE23).is_err());
assert!(pmt.get_node(NODE30).is_err());
assert!(pmt.get_node(NODE31).is_err());
}
/// Checks that the request of the path from the leaf which is not in the PMT will cause an error.
#[test]
fn err_get_path() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert!(pmt.get_path(NODE22).is_err());
assert!(pmt.get_path(NODE23).is_err());
assert!(pmt.get_path(NODE30).is_err());
assert!(pmt.get_path(NODE31).is_err());
}
#[test]
fn err_update_leaf() {
let mt = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let expected_root = mt.root();
let ms = MerkleStore::from(&mt);
let path33 = ms.get_path(expected_root, NODE33).unwrap();
let mut pmt = PartialMerkleTree::with_paths([(3, path33.value, path33.path)]).unwrap();
assert!(pmt.update_leaf(NODE22, int_to_node(22)).is_err());
assert!(pmt.update_leaf(NODE23, int_to_node(23)).is_err());
assert!(pmt.update_leaf(NODE30, int_to_node(30)).is_err());
assert!(pmt.update_leaf(NODE31, int_to_node(31)).is_err());
}

View File

@@ -1,4 +1,4 @@
use super::{vec, NodeIndex, Rpo256, Vec, Word};
use super::{vec, InnerNodeInfo, MerkleError, NodeIndex, Rpo256, RpoDigest, Vec};
use core::ops::{Deref, DerefMut};
// MERKLE PATH
@@ -7,7 +7,7 @@ use core::ops::{Deref, DerefMut};
/// A merkle path container, composed of a sequence of nodes of a Merkle tree.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct MerklePath {
nodes: Vec<Word>,
nodes: Vec<RpoDigest>,
}
impl MerklePath {
@@ -15,39 +15,67 @@ impl MerklePath {
// --------------------------------------------------------------------------------------------
/// Creates a new Merkle path from a list of nodes.
pub fn new(nodes: Vec<Word>) -> Self {
pub fn new(nodes: Vec<RpoDigest>) -> Self {
Self { nodes }
}
// PROVIDERS
// --------------------------------------------------------------------------------------------
/// Computes the merkle root for this opening.
pub fn compute_root(&self, index_value: u64, node: Word) -> Word {
let mut index = NodeIndex::new(self.depth(), index_value);
self.nodes.iter().copied().fold(node, |node, sibling| {
// compute the node and move to the next iteration.
let input = index.build_node(node.into(), sibling.into());
index.move_up();
Rpo256::merge(&input).into()
})
}
/// Returns the depth in which this Merkle path proof is valid.
pub fn depth(&self) -> u8 {
self.nodes.len() as u8
}
/// Computes the merkle root for this opening.
pub fn compute_root(&self, index: u64, node: RpoDigest) -> Result<RpoDigest, MerkleError> {
let mut index = NodeIndex::new(self.depth(), index)?;
let root = self.nodes.iter().copied().fold(node, |node, sibling| {
// compute the node and move to the next iteration.
let input = index.build_node(node, sibling);
index.move_up();
Rpo256::merge(&input)
});
Ok(root)
}
/// Verifies the Merkle opening proof towards the provided root.
///
/// Returns `true` if `node` exists at `index` in a Merkle tree with `root`.
pub fn verify(&self, index: u64, node: Word, root: &Word) -> bool {
root == &self.compute_root(index, node)
pub fn verify(&self, index: u64, node: RpoDigest, root: &RpoDigest) -> bool {
match self.compute_root(index, node) {
Ok(computed_root) => root == &computed_root,
Err(_) => false,
}
}
/// Returns an iterator over every inner node of this [MerklePath].
///
/// The iteration order is unspecified.
///
/// # Errors
/// Returns an error if the specified index is not valid for this path.
pub fn inner_nodes(
&self,
index: u64,
node: RpoDigest,
) -> Result<InnerNodeIterator, MerkleError> {
Ok(InnerNodeIterator {
nodes: &self.nodes,
index: NodeIndex::new(self.depth(), index)?,
value: node,
})
}
}
impl From<Vec<Word>> for MerklePath {
fn from(path: Vec<Word>) -> Self {
impl From<MerklePath> for Vec<RpoDigest> {
fn from(path: MerklePath) -> Self {
path.nodes
}
}
impl From<Vec<RpoDigest>> for MerklePath {
fn from(path: Vec<RpoDigest>) -> Self {
Self::new(path)
}
}
@@ -55,7 +83,7 @@ impl From<Vec<Word>> for MerklePath {
impl Deref for MerklePath {
// we use `Vec` here instead of slice so we can call vector mutation methods directly from the
// merkle path (example: `Vec::remove`).
type Target = Vec<Word>;
type Target = Vec<RpoDigest>;
fn deref(&self) -> &Self::Target {
&self.nodes
@@ -68,21 +96,57 @@ impl DerefMut for MerklePath {
}
}
impl FromIterator<Word> for MerklePath {
fn from_iter<T: IntoIterator<Item = Word>>(iter: T) -> Self {
// ITERATORS
// ================================================================================================
impl FromIterator<RpoDigest> for MerklePath {
fn from_iter<T: IntoIterator<Item = RpoDigest>>(iter: T) -> Self {
Self::new(iter.into_iter().collect())
}
}
impl IntoIterator for MerklePath {
type Item = Word;
type IntoIter = vec::IntoIter<Word>;
type Item = RpoDigest;
type IntoIter = vec::IntoIter<RpoDigest>;
fn into_iter(self) -> Self::IntoIter {
self.nodes.into_iter()
}
}
/// An iterator over internal nodes of a [MerklePath].
pub struct InnerNodeIterator<'a> {
nodes: &'a Vec<RpoDigest>,
index: NodeIndex,
value: RpoDigest,
}
impl<'a> Iterator for InnerNodeIterator<'a> {
type Item = InnerNodeInfo;
fn next(&mut self) -> Option<Self::Item> {
if !self.index.is_root() {
let sibling_pos = self.nodes.len() - self.index.depth() as usize;
let (left, right) = if self.index.is_value_odd() {
(self.nodes[sibling_pos], self.value)
} else {
(self.value, self.nodes[sibling_pos])
};
self.value = Rpo256::merge(&[left, right]);
self.index.move_up();
Some(InnerNodeInfo {
value: self.value,
left,
right,
})
} else {
None
}
}
}
// MERKLE PATH CONTAINERS
// ================================================================================================
@@ -90,7 +154,7 @@ impl IntoIterator for MerklePath {
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct ValuePath {
/// The node value opening for `path`.
pub value: Word,
pub value: RpoDigest,
/// The path from `value` to `root` (exclusive).
pub path: MerklePath,
}
@@ -102,7 +166,29 @@ pub struct ValuePath {
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct RootPath {
/// The node value opening for `path`.
pub root: Word,
pub root: RpoDigest,
/// The path from `value` to `root` (exclusive).
pub path: MerklePath,
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use crate::merkle::{int_to_node, MerklePath};
#[test]
fn test_inner_nodes() {
let nodes = vec![int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
let merkle_path = MerklePath::new(nodes);
let index = 6;
let node = int_to_node(5);
let root = merkle_path.compute_root(index, node).unwrap();
let inner_root = merkle_path.inner_nodes(index, node).unwrap().last().unwrap().value;
assert_eq!(root, inner_root);
}
}

View File

@@ -1,4 +1,5 @@
use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, ValuePath, Vec, Word, ZERO};
use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, ValuePath, Vec};
use crate::{hash::rpo::RpoDigest, Word};
// MERKLE PATH SET
// ================================================================================================
@@ -6,7 +7,7 @@ use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, ValuePath, Vec
/// A set of Merkle paths.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MerklePathSet {
root: Word,
root: RpoDigest,
total_depth: u8,
paths: BTreeMap<u64, MerklePath>,
}
@@ -17,7 +18,7 @@ impl MerklePathSet {
/// Returns an empty MerklePathSet.
pub fn new(depth: u8) -> Self {
let root = [ZERO; 4];
let root = RpoDigest::default();
let paths = BTreeMap::new();
Self {
@@ -32,21 +33,19 @@ impl MerklePathSet {
/// Analogous to `[Self::add_path]`.
pub fn with_paths<I>(self, paths: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
I: IntoIterator<Item = (u64, RpoDigest, MerklePath)>,
{
paths
.into_iter()
.try_fold(self, |mut set, (index, value, path)| {
set.add_path(index, value, path)?;
Ok(set)
})
paths.into_iter().try_fold(self, |mut set, (index, value, path)| {
set.add_path(index, value.into(), path)?;
Ok(set)
})
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root to which all paths in this set resolve.
pub const fn root(&self) -> Word {
pub const fn root(&self) -> RpoDigest {
self.root
}
@@ -63,12 +62,7 @@ impl MerklePathSet {
/// Returns an error if:
/// * The specified index is not valid for the depth of structure.
/// * Requested node does not exist in the set.
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
if !index.with_depth(self.total_depth).is_valid() {
return Err(MerkleError::InvalidIndex(
index.with_depth(self.total_depth),
));
}
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.depth() != self.total_depth {
return Err(MerkleError::InvalidDepth {
expected: self.total_depth,
@@ -80,7 +74,7 @@ impl MerklePathSet {
let path_key = index.value() - parity;
self.paths
.get(&path_key)
.ok_or(MerkleError::NodeNotInSet(path_key))
.ok_or(MerkleError::NodeNotInSet(index))
.map(|path| path[parity as usize])
}
@@ -90,7 +84,8 @@ impl MerklePathSet {
/// * The specified index is not valid for the depth of the structure.
/// * Leaf with the requested path does not exist in the set.
pub fn get_leaf(&self, index: u64) -> Result<Word, MerkleError> {
self.get_node(NodeIndex::new(self.depth(), index))
let index = NodeIndex::new(self.depth(), index)?;
Ok(self.get_node(index)?.into())
}
/// Returns a Merkle path to the node at the specified index. The node itself is
@@ -101,9 +96,6 @@ impl MerklePathSet {
/// * The specified index is not valid for the depth of structure.
/// * Node of the requested path does not exist in the set.
pub fn get_path(&self, index: NodeIndex) -> Result<MerklePath, MerkleError> {
if !index.with_depth(self.total_depth).is_valid() {
return Err(MerkleError::InvalidIndex(index));
}
if index.depth() != self.total_depth {
return Err(MerkleError::InvalidDepth {
expected: self.total_depth,
@@ -113,11 +105,8 @@ impl MerklePathSet {
let parity = index.value() & 1;
let path_key = index.value() - parity;
let mut path = self
.paths
.get(&path_key)
.cloned()
.ok_or(MerkleError::NodeNotInSet(index.value()))?;
let mut path =
self.paths.get(&path_key).cloned().ok_or(MerkleError::NodeNotInSet(index))?;
path.remove(parity as usize);
Ok(path)
}
@@ -165,8 +154,7 @@ impl MerklePathSet {
value: Word,
mut path: MerklePath,
) -> Result<(), MerkleError> {
let depth = path.len() as u8;
let mut index = NodeIndex::new(depth, index_value);
let mut index = NodeIndex::new(path.len() as u8, index_value)?;
if index.depth() != self.total_depth {
return Err(MerkleError::InvalidDepth {
expected: self.total_depth,
@@ -176,21 +164,21 @@ impl MerklePathSet {
// update the current path
let parity = index_value & 1;
path.insert(parity as usize, value);
path.insert(parity as usize, value.into());
// traverse to the root, updating the nodes
let root: Word = Rpo256::merge(&[path[0].into(), path[1].into()]).into();
let root = Rpo256::merge(&[path[0], path[1]]);
let root = path.iter().skip(2).copied().fold(root, |root, hash| {
index.move_up();
Rpo256::merge(&index.build_node(root.into(), hash.into())).into()
Rpo256::merge(&index.build_node(root, hash))
});
// if the path set is empty (the root is all ZEROs), set the root to the root of the added
// path; otherwise, the root of the added path must be identical to the current root
if self.root == [ZERO; 4] {
if self.root == RpoDigest::default() {
self.root = root;
} else if self.root != root {
return Err(MerkleError::InvalidPath(path));
return Err(MerkleError::ConflictingRoots([self.root, root].to_vec()));
}
// finish updating the path
@@ -205,40 +193,35 @@ impl MerklePathSet {
/// Returns an error if:
/// * Requested node does not exist in the set.
pub fn update_leaf(&mut self, base_index_value: u64, value: Word) -> Result<(), MerkleError> {
let depth = self.depth();
let mut index = NodeIndex::new(depth, base_index_value);
if !index.is_valid() {
return Err(MerkleError::InvalidIndex(index));
}
let mut index = NodeIndex::new(self.depth(), base_index_value)?;
let parity = index.value() & 1;
let path_key = index.value() - parity;
let path = match self.paths.get_mut(&path_key) {
Some(path) => path,
None => return Err(MerkleError::NodeNotInSet(base_index_value)),
None => return Err(MerkleError::NodeNotInSet(index)),
};
// Fill old_hashes vector -----------------------------------------------------------------
let mut current_index = index;
let mut old_hashes = Vec::with_capacity(path.len().saturating_sub(2));
let mut root: Word = Rpo256::merge(&[path[0].into(), path[1].into()]).into();
let mut root = Rpo256::merge(&[path[0], path[1]]);
for hash in path.iter().skip(2).copied() {
old_hashes.push(root);
current_index.move_up();
let input = current_index.build_node(hash.into(), root.into());
root = Rpo256::merge(&input).into();
let input = current_index.build_node(hash, root);
root = Rpo256::merge(&input);
}
// Fill new_hashes vector -----------------------------------------------------------------
path[index.is_value_odd() as usize] = value;
path[index.is_value_odd() as usize] = value.into();
let mut new_hashes = Vec::with_capacity(path.len().saturating_sub(2));
let mut new_root: Word = Rpo256::merge(&[path[0].into(), path[1].into()]).into();
let mut new_root = Rpo256::merge(&[path[0], path[1]]);
for path_hash in path.iter().skip(2).copied() {
new_hashes.push(new_root);
index.move_up();
let input = current_index.build_node(path_hash.into(), new_root.into());
new_root = Rpo256::merge(&input).into();
let input = current_index.build_node(path_hash, new_root);
new_root = Rpo256::merge(&input);
}
self.root = new_root;
@@ -263,7 +246,7 @@ impl MerklePathSet {
#[cfg(test)]
mod tests {
use super::*;
use crate::merkle::int_to_node;
use crate::merkle::{int_to_leaf, int_to_node};
#[test]
fn get_root() {
@@ -293,10 +276,9 @@ mod tests {
let set = super::MerklePathSet::new(depth)
.with_paths([(index, hash_6, path_6.clone().into())])
.unwrap();
let stored_path_6 = set.get_path(NodeIndex::new(depth, index)).unwrap();
let stored_path_6 = set.get_path(NodeIndex::make(depth, index)).unwrap();
assert_eq!(path_6, *stored_path_6);
assert!(set.get_path(NodeIndex::new(depth, 15_u64)).is_err())
}
#[test]
@@ -305,15 +287,9 @@ mod tests {
let hash_6 = int_to_node(6);
let index = 6_u64;
let depth = 3_u8;
let set = MerklePathSet::new(depth)
.with_paths([(index, hash_6, path_6.into())])
.unwrap();
let set = MerklePathSet::new(depth).with_paths([(index, hash_6, path_6.into())]).unwrap();
assert_eq!(
int_to_node(6u64),
set.get_node(NodeIndex::new(depth, index)).unwrap()
);
assert!(set.get_node(NodeIndex::new(depth, 15_u64)).is_err());
assert_eq!(int_to_node(6u64), set.get_node(NodeIndex::make(depth, index)).unwrap());
}
#[test]
@@ -343,20 +319,20 @@ mod tests {
])
.unwrap();
let new_hash_6 = int_to_node(100);
let new_hash_5 = int_to_node(55);
let new_hash_6 = int_to_leaf(100);
let new_hash_5 = int_to_leaf(55);
set.update_leaf(index_6, new_hash_6).unwrap();
let new_path_4 = set.get_path(NodeIndex::new(depth, index_4)).unwrap();
let new_hash_67 = calculate_parent_hash(new_hash_6, 14_u64, hash_7);
let new_path_4 = set.get_path(NodeIndex::make(depth, index_4)).unwrap();
let new_hash_67 = calculate_parent_hash(new_hash_6.into(), 14_u64, hash_7);
assert_eq!(new_hash_67, new_path_4[1]);
set.update_leaf(index_5, new_hash_5).unwrap();
let new_path_4 = set.get_path(NodeIndex::new(depth, index_4)).unwrap();
let new_path_6 = set.get_path(NodeIndex::new(depth, index_6)).unwrap();
let new_hash_45 = calculate_parent_hash(new_hash_5, 13_u64, hash_4);
let new_path_4 = set.get_path(NodeIndex::make(depth, index_4)).unwrap();
let new_path_6 = set.get_path(NodeIndex::make(depth, index_6)).unwrap();
let new_hash_45 = calculate_parent_hash(new_hash_5.into(), 13_u64, hash_4);
assert_eq!(new_hash_45, new_path_6[1]);
assert_eq!(new_hash_5, new_path_4[0]);
assert_eq!(RpoDigest::from(new_hash_5), new_path_4[0]);
}
#[test]
@@ -370,45 +346,45 @@ mod tests {
let g = int_to_node(7);
let h = int_to_node(8);
let i = Rpo256::merge(&[a.into(), b.into()]);
let j = Rpo256::merge(&[c.into(), d.into()]);
let k = Rpo256::merge(&[e.into(), f.into()]);
let l = Rpo256::merge(&[g.into(), h.into()]);
let i = Rpo256::merge(&[a, b]);
let j = Rpo256::merge(&[c, d]);
let k = Rpo256::merge(&[e, f]);
let l = Rpo256::merge(&[g, h]);
let m = Rpo256::merge(&[i.into(), j.into()]);
let n = Rpo256::merge(&[k.into(), l.into()]);
let m = Rpo256::merge(&[i, j]);
let n = Rpo256::merge(&[k, l]);
let root = Rpo256::merge(&[m.into(), n.into()]);
let root = Rpo256::merge(&[m, n]);
let mut set = MerklePathSet::new(3);
let value = b;
let index = 1;
let path = MerklePath::new([a.into(), j.into(), n.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
let path = MerklePath::new([a, j, n].to_vec());
set.add_path(index, value.into(), path).unwrap();
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(root, set.root());
let value = e;
let index = 4;
let path = MerklePath::new([f.into(), l.into(), m.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
let path = MerklePath::new([f, l, m].to_vec());
set.add_path(index, value.into(), path).unwrap();
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(root, set.root());
let value = a;
let index = 0;
let path = MerklePath::new([b.into(), j.into(), n.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
let path = MerklePath::new([b, j, n].to_vec());
set.add_path(index, value.into(), path).unwrap();
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(root, set.root());
let value = h;
let index = 7;
let path = MerklePath::new([g.into(), k.into(), m.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
let path = MerklePath::new([g, k, m].to_vec());
set.add_path(index, value.into(), path).unwrap();
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(root, set.root());
}
// HELPER FUNCTIONS
@@ -422,11 +398,11 @@ mod tests {
/// - node — current node
/// - node_pos — position of the current node
/// - sibling — neighboring vertex in the tree
fn calculate_parent_hash(node: Word, node_pos: u64, sibling: Word) -> Word {
fn calculate_parent_hash(node: RpoDigest, node_pos: u64, sibling: RpoDigest) -> RpoDigest {
if is_even(node_pos) {
Rpo256::merge(&[node.into(), sibling.into()]).into()
Rpo256::merge(&[node, sibling])
} else {
Rpo256::merge(&[sibling.into(), node.into()]).into()
Rpo256::merge(&[sibling, node])
}
}
}

View File

@@ -1,5 +1,6 @@
use super::{
BTreeMap, EmptySubtreeRoots, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word,
BTreeMap, BTreeSet, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex,
Rpo256, RpoDigest, Vec, Word,
};
#[cfg(test)]
@@ -8,14 +9,16 @@ mod tests;
// SPARSE MERKLE TREE
// ================================================================================================
/// A sparse Merkle tree with 63-bit keys and 4-element leaf values, without compaction.
/// Manipulation and retrieval of leaves and internal nodes is provided by its internal `Store`.
/// A sparse Merkle tree with 64-bit keys and 4-element leaf values, without compaction.
///
/// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SimpleSmt {
root: Word,
depth: u8,
pub(crate) store: Store,
root: RpoDigest,
leaves: BTreeMap<u64, Word>,
branches: BTreeMap<NodeIndex, BranchNode>,
empty_hashes: Vec<RpoDigest>,
}
impl SimpleSmt {
@@ -26,12 +29,20 @@ impl SimpleSmt {
pub const MIN_DEPTH: u8 = 1;
/// Maximum supported depth.
pub const MAX_DEPTH: u8 = 63;
pub const MAX_DEPTH: u8 = 64;
/// Value of an empty leaf.
pub const EMPTY_VALUE: Word = super::empty_roots::EMPTY_WORD;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates a new simple SMT with the provided depth.
/// Returns a new [SimpleSmt] instantiated with the specified depth.
///
/// All leaves in the returned tree are set to [ZERO; 4].
///
/// # Errors
/// Returns an error if the depth is 0 or is greater than 64.
pub fn new(depth: u8) -> Result<Self, MerkleError> {
// validate the range of the depth.
if depth < Self::MIN_DEPTH {
@@ -40,48 +51,66 @@ impl SimpleSmt {
return Err(MerkleError::DepthTooBig(depth as u64));
}
let (store, root) = Store::new(depth);
Ok(Self { root, depth, store })
let empty_hashes = EmptySubtreeRoots::empty_hashes(depth).to_vec();
let root = empty_hashes[0];
Ok(Self {
root,
depth,
empty_hashes,
leaves: BTreeMap::new(),
branches: BTreeMap::new(),
})
}
/// Appends the provided entries as leaves of the tree.
/// Returns a new [SimpleSmt] instantiated with the specified depth and with leaves
/// set as specified by the provided entries.
///
/// All leaves omitted from the entries list are set to [ZERO; 4].
///
/// # Errors
///
/// The function will fail if the provided entries count exceed the maximum tree capacity, that
/// is `2^{depth}`.
pub fn with_leaves<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
/// Returns an error if:
/// - If the depth is 0 or is greater than 64.
/// - The number of entries exceeds the maximum tree capacity, that is 2^{depth}.
/// - The provided entries contain multiple values for the same key.
pub fn with_leaves<R, I>(depth: u8, entries: R) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
// check if the leaves count will fit the depth setup
let mut entries = entries.into_iter();
let max = 1 << self.depth;
// create an empty tree
let mut tree = Self::new(depth)?;
// check if the number of leaves can be accommodated by the tree's depth; we use a min
// depth of 63 because we consider passing in a vector of size 2^64 infeasible.
let entries = entries.into_iter();
let max = 1 << tree.depth.min(63);
if entries.len() > max {
return Err(MerkleError::InvalidEntriesCount(max, entries.len()));
return Err(MerkleError::InvalidNumEntries(max, entries.len()));
}
// append leaves and return
entries.try_for_each(|(key, leaf)| self.insert_leaf(key, leaf))?;
Ok(self)
}
/// Replaces the internal empty digests used when a given depth doesn't contain a node.
pub fn with_empty_subtrees<I>(mut self, hashes: I) -> Self
where
I: IntoIterator<Item = RpoDigest>,
{
self.store
.replace_empty_subtrees(hashes.into_iter().collect());
self
// append leaves to the tree returning an error if a duplicate entry for the same key
// is found
let mut empty_entries = BTreeSet::new();
for (key, value) in entries {
let old_value = tree.update_leaf(key, value)?;
if old_value != Self::EMPTY_VALUE || empty_entries.contains(&key) {
return Err(MerkleError::DuplicateValuesForIndex(key));
}
// if we've processed an empty entry, add the key to the set of empty entry keys, and
// if this key was already in the set, return an error
if value == Self::EMPTY_VALUE && !empty_entries.insert(key) {
return Err(MerkleError::DuplicateValuesForIndex(key));
}
}
Ok(tree)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub const fn root(&self) -> Word {
pub const fn root(&self) -> RpoDigest {
self.root
}
@@ -90,47 +119,44 @@ impl SimpleSmt {
self.depth
}
// PROVIDERS
// --------------------------------------------------------------------------------------------
/// Returns the set count of the keys of the leaves.
pub fn leaves_count(&self) -> usize {
self.store.leaves_count()
}
/// Returns a node at the specified key
/// Returns a node at the specified index.
///
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
pub fn get_node(&self, index: &NodeIndex) -> Result<Word, MerkleError> {
/// Returns an error if the specified index has depth set to 0 or the depth is greater than
/// the depth of this Merkle tree.
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.is_root() {
Err(MerkleError::DepthTooSmall(index.depth()))
} else if index.depth() > self.depth() {
Err(MerkleError::DepthTooBig(index.depth() as u64))
} else if index.depth() == self.depth() {
self.store
.get_leaf_node(index.value())
.or_else(|| {
self.store
.empty_hashes
.get(index.depth() as usize)
.copied()
.map(Word::from)
})
.ok_or(MerkleError::InvalidIndex(*index))
// the lookup in empty_hashes could fail only if empty_hashes were not built correctly
// by the constructor as we check the depth of the lookup above.
Ok(RpoDigest::from(
self.get_leaf_node(index.value())
.unwrap_or_else(|| *self.empty_hashes[index.depth() as usize]),
))
} else {
let branch_node = self.store.get_branch_node(index);
Ok(Rpo256::merge(&[branch_node.left, branch_node.right]).into())
Ok(self.get_branch_node(&index).parent())
}
}
/// Returns a Merkle path from the node at the specified key to the root. The node itself is
/// not included in the path.
/// Returns a value of the leaf at the specified index.
///
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
/// Returns an error if the index is greater than the maximum tree capacity, that is 2^{depth}.
pub fn get_leaf(&self, index: u64) -> Result<Word, MerkleError> {
let index = NodeIndex::new(self.depth, index)?;
Ok(self.get_node(index)?.into())
}
/// Returns a Merkle path from the node at the specified index to the root.
///
/// The node itself is not included in the path.
///
/// # Errors
/// Returns an error if the specified index has depth set to 0 or the depth is greater than
/// the depth of this Merkle tree.
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
@@ -142,117 +168,81 @@ impl SimpleSmt {
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self.store.get_branch_node(&index);
let BranchNode { left, right } = self.get_branch_node(&index);
let value = if is_right { left } else { right };
path.push(*value);
path.push(value);
}
Ok(path.into())
Ok(MerklePath::new(path))
}
/// Return a Merkle path from the leaf at the specified key to the root. The leaf itself is not
/// included in the path.
/// Return a Merkle path from the leaf at the specified index to the root.
///
/// The leaf itself is not included in the path.
///
/// # Errors
/// Returns an error if:
/// * The specified key does not exist as a leaf node.
pub fn get_leaf_path(&self, key: u64) -> Result<MerklePath, MerkleError> {
self.get_path(NodeIndex::new(self.depth(), key))
/// Returns an error if the index is greater than the maximum tree capacity, that is 2^{depth}.
pub fn get_leaf_path(&self, index: u64) -> Result<MerklePath, MerkleError> {
let index = NodeIndex::new(self.depth(), index)?;
self.get_path(index)
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the leaves of this [SimpleSmt].
pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
self.leaves.iter().map(|(i, w)| (*i, w))
}
/// Returns an iterator over the inner nodes of this Merkle tree.
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.branches.values().map(|e| InnerNodeInfo {
value: e.parent(),
left: e.left,
right: e.right,
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Replaces the leaf located at the specified key, and recomputes hashes by walking up the tree
/// Updates value of the leaf at the specified index returning the old leaf value.
///
/// This also recomputes all hashes between the leaf and the root, updating the root itself.
///
/// # Errors
/// Returns an error if the specified key is not a valid leaf index for this tree.
pub fn update_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
if !self.store.check_leaf_node_exists(key) {
return Err(MerkleError::InvalidIndex(NodeIndex::new(self.depth(), key)));
/// Returns an error if the index is greater than the maximum tree capacity, that is 2^{depth}.
pub fn update_leaf(&mut self, index: u64, value: Word) -> Result<Word, MerkleError> {
let old_value = self.insert_leaf_node(index, value).unwrap_or(Self::EMPTY_VALUE);
// if the old value and new value are the same, there is nothing to update
if value == old_value {
return Ok(value);
}
self.insert_leaf(key, value)?;
Ok(())
}
/// Inserts a leaf located at the specified key, and recomputes hashes by walking up the tree
pub fn insert_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
self.store.insert_leaf_node(key, value);
// TODO consider using a map `index |-> word` instead of `index |-> (word, word)`
let mut index = NodeIndex::new(self.depth(), key);
let mut index = NodeIndex::new(self.depth(), index)?;
let mut value = RpoDigest::from(value);
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self.store.get_branch_node(&index);
let (left, right) = if is_right {
(left, value)
} else {
(value, right)
};
self.store.insert_branch_node(index, left, right);
let BranchNode { left, right } = self.get_branch_node(&index);
let (left, right) = if is_right { (left, value) } else { (value, right) };
self.insert_branch_node(index, left, right);
value = Rpo256::merge(&[left, right]);
}
self.root = value.into();
Ok(())
}
}
// STORE
// ================================================================================================
/// A data store for sparse Merkle tree key-value pairs.
/// Leaves and branch nodes are stored separately in B-tree maps, indexed by key and (key, depth)
/// respectively. Hashes for blank subtrees at each layer are stored in `empty_hashes`, beginning
/// with the root hash of an empty tree, and ending with the zero value of a leaf node.
#[derive(Debug, Clone, PartialEq, Eq)]
pub(crate) struct Store {
pub(crate) branches: BTreeMap<NodeIndex, BranchNode>,
leaves: BTreeMap<u64, Word>,
pub(crate) empty_hashes: Vec<RpoDigest>,
depth: u8,
}
#[derive(Debug, Default, Clone, PartialEq, Eq)]
pub(crate) struct BranchNode {
pub(crate) left: RpoDigest,
pub(crate) right: RpoDigest,
}
impl Store {
fn new(depth: u8) -> (Self, Word) {
let branches = BTreeMap::new();
let leaves = BTreeMap::new();
// Construct empty node digests for each layer of the tree
let empty_hashes = EmptySubtreeRoots::empty_hashes(depth).to_vec();
let root = empty_hashes[0].into();
let store = Self {
branches,
leaves,
empty_hashes,
depth,
};
(store, root)
self.root = value;
Ok(old_value)
}
fn replace_empty_subtrees(&mut self, hashes: Vec<RpoDigest>) {
self.empty_hashes = hashes;
}
fn check_leaf_node_exists(&self, key: u64) -> bool {
self.leaves.contains_key(&key)
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
fn get_leaf_node(&self, key: u64) -> Option<Word> {
self.leaves.get(&key).copied()
}
fn insert_leaf_node(&mut self, key: u64, node: Word) {
self.leaves.insert(key, node);
fn insert_leaf_node(&mut self, key: u64, node: Word) -> Option<Word> {
self.leaves.insert(key, node)
}
fn get_branch_node(&self, index: &NodeIndex) -> BranchNode {
@@ -269,8 +259,19 @@ impl Store {
let branch = BranchNode { left, right };
self.branches.insert(index, branch);
}
}
fn leaves_count(&self) -> usize {
self.leaves.len()
// BRANCH NODE
// ================================================================================================
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct BranchNode {
left: RpoDigest,
right: RpoDigest,
}
impl BranchNode {
fn parent(&self) -> RpoDigest {
Rpo256::merge(&[self.left, self.right])
}
}

View File

@@ -1,21 +1,21 @@
use super::{
super::{int_to_node, MerkleTree, RpoDigest, SimpleSmt},
NodeIndex, Rpo256, Vec, Word,
super::{InnerNodeInfo, MerkleError, MerkleTree, RpoDigest, SimpleSmt},
NodeIndex, Rpo256, Vec,
};
use proptest::prelude::*;
use rand_utils::prng_array;
use crate::{
merkle::{digests_to_words, empty_roots::EMPTY_WORD, int_to_leaf, int_to_node},
Word,
};
// TEST DATA
// ================================================================================================
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const KEYS8: [u64; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
const VALUES4: [Word; 4] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
];
const VALUES4: [RpoDigest; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
const VALUES8: [Word; 8] = [
const VALUES8: [RpoDigest; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
@@ -26,27 +26,19 @@ const VALUES8: [Word; 8] = [
int_to_node(8),
];
const ZERO_VALUES8: [Word; 8] = [int_to_node(0); 8];
const ZERO_VALUES8: [Word; 8] = [int_to_leaf(0); 8];
// TESTS
// ================================================================================================
#[test]
fn build_empty_tree() {
// tree of depth 3
let smt = SimpleSmt::new(3).unwrap();
let mt = MerkleTree::new(ZERO_VALUES8.to_vec()).unwrap();
assert_eq!(mt.root(), smt.root());
}
#[test]
fn empty_digests_are_consistent() {
let depth = 5;
let root = SimpleSmt::new(depth).unwrap().root();
let computed: [RpoDigest; 2] = (0..depth).fold([Default::default(); 2], |state, _| {
let digest = Rpo256::merge(&state);
[digest; 2]
});
assert_eq!(Word::from(computed[0]), root);
}
#[test]
fn build_sparse_tree() {
let mut smt = SimpleSmt::new(3).unwrap();
@@ -54,121 +46,130 @@ fn build_sparse_tree() {
// insert single value
let key = 6;
let new_node = int_to_node(7);
let new_node = int_to_leaf(7);
values[key as usize] = new_node;
smt.insert_leaf(key, new_node)
.expect("Failed to insert leaf");
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
let mt2 = MerkleTree::new(values.clone()).unwrap();
assert_eq!(mt2.root(), smt.root());
assert_eq!(
mt2.get_path(NodeIndex::new(3, 6)).unwrap(),
smt.get_path(NodeIndex::new(3, 6)).unwrap()
mt2.get_path(NodeIndex::make(3, 6)).unwrap(),
smt.get_path(NodeIndex::make(3, 6)).unwrap()
);
assert_eq!(old_value, EMPTY_WORD);
// insert second value at distinct leaf branch
let key = 2;
let new_node = int_to_node(3);
let new_node = int_to_leaf(3);
values[key as usize] = new_node;
smt.insert_leaf(key, new_node)
.expect("Failed to insert leaf");
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
let mt3 = MerkleTree::new(values).unwrap();
assert_eq!(mt3.root(), smt.root());
assert_eq!(
mt3.get_path(NodeIndex::new(3, 2)).unwrap(),
smt.get_path(NodeIndex::new(3, 2)).unwrap()
mt3.get_path(NodeIndex::make(3, 2)).unwrap(),
smt.get_path(NodeIndex::make(3, 2)).unwrap()
);
assert_eq!(old_value, EMPTY_WORD);
}
#[test]
fn build_full_tree() {
let tree = SimpleSmt::new(2)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
.unwrap();
fn test_depth2_tree() {
let tree =
SimpleSmt::with_leaves(2, KEYS4.into_iter().zip(digests_to_words(&VALUES4).into_iter()))
.unwrap();
// check internal structure
let (root, node2, node3) = compute_internal_nodes();
assert_eq!(root, tree.root());
assert_eq!(node2, tree.get_node(&NodeIndex::new(1, 0)).unwrap());
assert_eq!(node3, tree.get_node(&NodeIndex::new(1, 1)).unwrap());
assert_eq!(node2, tree.get_node(NodeIndex::make(1, 0)).unwrap());
assert_eq!(node3, tree.get_node(NodeIndex::make(1, 1)).unwrap());
// check get_node()
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
// check get_path(): depth 2
assert_eq!(vec![VALUES4[1], node3], *tree.get_path(NodeIndex::make(2, 0)).unwrap());
assert_eq!(vec![VALUES4[0], node3], *tree.get_path(NodeIndex::make(2, 1)).unwrap());
assert_eq!(vec![VALUES4[3], node2], *tree.get_path(NodeIndex::make(2, 2)).unwrap());
assert_eq!(vec![VALUES4[2], node2], *tree.get_path(NodeIndex::make(2, 3)).unwrap());
// check get_path(): depth 1
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
assert_eq!(vec![node2], *tree.get_path(NodeIndex::make(1, 1)).unwrap());
}
#[test]
fn get_values() {
let tree = SimpleSmt::new(2)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
.unwrap();
fn test_inner_node_iterator() -> Result<(), MerkleError> {
let tree =
SimpleSmt::with_leaves(2, KEYS4.into_iter().zip(digests_to_words(&VALUES4).into_iter()))
.unwrap();
// check depth 2
assert_eq!(VALUES4[0], tree.get_node(&NodeIndex::new(2, 0)).unwrap());
assert_eq!(VALUES4[1], tree.get_node(&NodeIndex::new(2, 1)).unwrap());
assert_eq!(VALUES4[2], tree.get_node(&NodeIndex::new(2, 2)).unwrap());
assert_eq!(VALUES4[3], tree.get_node(&NodeIndex::new(2, 3)).unwrap());
}
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
#[test]
fn get_path() {
let tree = SimpleSmt::new(2)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(VALUES4.into_iter()))
.unwrap();
// get parent nodes
let root = tree.root();
let l1n0 = tree.get_node(NodeIndex::make(1, 0))?;
let l1n1 = tree.get_node(NodeIndex::make(1, 1))?;
let l2n0 = tree.get_node(NodeIndex::make(2, 0))?;
let l2n1 = tree.get_node(NodeIndex::make(2, 1))?;
let l2n2 = tree.get_node(NodeIndex::make(2, 2))?;
let l2n3 = tree.get_node(NodeIndex::make(2, 3))?;
let (_, node2, node3) = compute_internal_nodes();
let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect();
let expected = vec![
InnerNodeInfo {
value: root,
left: l1n0,
right: l1n1,
},
InnerNodeInfo {
value: l1n0,
left: l2n0,
right: l2n1,
},
InnerNodeInfo {
value: l1n1,
left: l2n2,
right: l2n3,
},
];
assert_eq!(nodes, expected);
// check depth 2
assert_eq!(
vec![VALUES4[1], node3],
*tree.get_path(NodeIndex::new(2, 0)).unwrap()
);
assert_eq!(
vec![VALUES4[0], node3],
*tree.get_path(NodeIndex::new(2, 1)).unwrap()
);
assert_eq!(
vec![VALUES4[3], node2],
*tree.get_path(NodeIndex::new(2, 2)).unwrap()
);
assert_eq!(
vec![VALUES4[2], node2],
*tree.get_path(NodeIndex::new(2, 3)).unwrap()
);
// check depth 1
assert_eq!(vec![node3], *tree.get_path(NodeIndex::new(1, 0)).unwrap());
assert_eq!(vec![node2], *tree.get_path(NodeIndex::new(1, 1)).unwrap());
Ok(())
}
#[test]
fn update_leaf() {
let mut tree = SimpleSmt::new(3)
.unwrap()
.with_leaves(KEYS8.into_iter().zip(VALUES8.into_iter()))
.unwrap();
let mut tree =
SimpleSmt::with_leaves(3, KEYS8.into_iter().zip(digests_to_words(&VALUES8).into_iter()))
.unwrap();
// update one value
let key = 3;
let new_node = int_to_node(9);
let mut expected_values = VALUES8.to_vec();
let new_node = int_to_leaf(9);
let mut expected_values = digests_to_words(&VALUES8);
expected_values[key] = new_node;
let expected_tree = SimpleSmt::new(3)
.unwrap()
.with_leaves(KEYS8.into_iter().zip(expected_values.clone().into_iter()))
.unwrap();
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root, tree.root);
let old_leaf = tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root(), tree.root);
assert_eq!(old_leaf, *VALUES8[key]);
// update another value
let key = 6;
let new_node = int_to_node(10);
let new_node = int_to_leaf(10);
expected_values[key] = new_node;
let expected_tree = SimpleSmt::new(3)
.unwrap()
.with_leaves(KEYS8.into_iter().zip(expected_values.into_iter()))
.unwrap();
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root, tree.root);
let old_leaf = tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root(), tree.root);
assert_eq!(old_leaf, *VALUES8[key]);
}
#[test]
@@ -181,34 +182,34 @@ fn small_tree_opening_is_consistent() {
// / \ / \ / \ / \
// a b 0 0 c 0 0 d
let z = Word::from(RpoDigest::default());
let z = EMPTY_WORD;
let a = Word::from(Rpo256::merge(&[z.into(); 2]));
let b = Word::from(Rpo256::merge(&[a.into(); 2]));
let c = Word::from(Rpo256::merge(&[b.into(); 2]));
let d = Word::from(Rpo256::merge(&[c.into(); 2]));
let e = Word::from(Rpo256::merge(&[a.into(), b.into()]));
let f = Word::from(Rpo256::merge(&[z.into(), z.into()]));
let g = Word::from(Rpo256::merge(&[c.into(), z.into()]));
let h = Word::from(Rpo256::merge(&[z.into(), d.into()]));
let e = Rpo256::merge(&[a.into(), b.into()]);
let f = Rpo256::merge(&[z.into(), z.into()]);
let g = Rpo256::merge(&[c.into(), z.into()]);
let h = Rpo256::merge(&[z.into(), d.into()]);
let i = Word::from(Rpo256::merge(&[e.into(), f.into()]));
let j = Word::from(Rpo256::merge(&[g.into(), h.into()]));
let i = Rpo256::merge(&[e, f]);
let j = Rpo256::merge(&[g, h]);
let k = Word::from(Rpo256::merge(&[i.into(), j.into()]));
let k = Rpo256::merge(&[i, j]);
let depth = 3;
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
let tree = SimpleSmt::new(depth).unwrap().with_leaves(entries).unwrap();
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
assert_eq!(tree.root(), Word::from(k));
assert_eq!(tree.root(), k);
let cases: Vec<(u8, u64, Vec<Word>)> = vec![
(3, 0, vec![b, f, j]),
(3, 1, vec![a, f, j]),
(3, 4, vec![z, h, i]),
(3, 7, vec![z, g, i]),
let cases: Vec<(u8, u64, Vec<RpoDigest>)> = vec![
(3, 0, vec![b.into(), f, j]),
(3, 1, vec![a.into(), f, j]),
(3, 4, vec![z.into(), h, i]),
(3, 7, vec![z.into(), g, i]),
(2, 0, vec![f, j]),
(2, 1, vec![e, j]),
(2, 2, vec![h, i]),
@@ -218,71 +219,45 @@ fn small_tree_opening_is_consistent() {
];
for (depth, key, path) in cases {
let opening = tree.get_path(NodeIndex::new(depth, key)).unwrap();
let opening = tree.get_path(NodeIndex::make(depth, key)).unwrap();
assert_eq!(path, *opening);
}
}
proptest! {
#[test]
fn arbitrary_openings_single_leaf(
depth in SimpleSmt::MIN_DEPTH..SimpleSmt::MAX_DEPTH,
key in prop::num::u64::ANY,
leaf in prop::num::u64::ANY,
) {
let mut tree = SimpleSmt::new(depth).unwrap();
#[test]
fn fail_on_duplicates() {
let entries = [(1_u64, int_to_leaf(1)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(3))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
let key = key % (1 << depth as u64);
let leaf = int_to_node(leaf);
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(0))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
tree.insert_leaf(key, leaf.into()).unwrap();
tree.get_leaf_path(key).unwrap();
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(1))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
// traverse to root, fetching all paths
for d in 1..depth {
let k = key >> (depth - d);
tree.get_path(NodeIndex::new(d, k)).unwrap();
}
}
let entries = [(1_u64, int_to_leaf(1)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(0))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
}
#[test]
fn arbitrary_openings_multiple_leaves(
depth in SimpleSmt::MIN_DEPTH..SimpleSmt::MAX_DEPTH,
count in 2u8..10u8,
ref seed in any::<[u8; 32]>()
) {
let mut tree = SimpleSmt::new(depth).unwrap();
let mut seed = *seed;
let leaves = (1 << depth) - 1;
for _ in 0..count {
seed = prng_array(seed);
let mut key = [0u8; 8];
let mut leaf = [0u8; 8];
key.copy_from_slice(&seed[..8]);
leaf.copy_from_slice(&seed[8..16]);
let key = u64::from_le_bytes(key);
let key = key % leaves;
let leaf = u64::from_le_bytes(leaf);
let leaf = int_to_node(leaf);
tree.insert_leaf(key, leaf).unwrap();
tree.get_leaf_path(key).unwrap();
}
}
#[test]
fn with_no_duplicates_empty_node() {
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_ok());
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn compute_internal_nodes() -> (Word, Word, Word) {
let node2 = Rpo256::hash_elements(&[VALUES4[0], VALUES4[1]].concat());
let node3 = Rpo256::hash_elements(&[VALUES4[2], VALUES4[3]].concat());
fn compute_internal_nodes() -> (RpoDigest, RpoDigest, RpoDigest) {
let node2 = Rpo256::merge(&[VALUES4[0], VALUES4[1]]);
let node3 = Rpo256::merge(&[VALUES4[2], VALUES4[3]]);
let root = Rpo256::merge(&[node2, node3]);
(root.into(), node2.into(), node3.into())
(root, node2, node3)
}

View File

@@ -1,19 +1,30 @@
use super::{
BTreeMap, BTreeSet, EmptySubtreeRoots, MerkleError, MerklePath, MerklePathSet, MerkleTree,
NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, ValuePath, Vec, Word,
mmr::Mmr, BTreeMap, EmptySubtreeRoots, InnerNodeInfo, KvMap, MerkleError, MerklePath,
MerklePathSet, MerkleTree, NodeIndex, RecordingMap, RootPath, Rpo256, RpoDigest, SimpleSmt,
TieredSmt, ValuePath, Vec,
};
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
use core::borrow::Borrow;
#[cfg(test)]
mod tests;
// MERKLE STORE
// ================================================================================================
/// A default [MerkleStore] which uses a simple [BTreeMap] as the backing storage.
pub type DefaultMerkleStore = MerkleStore<BTreeMap<RpoDigest, StoreNode>>;
/// A [MerkleStore] with recording capabilities which uses [RecordingMap] as the backing storage.
pub type RecordingMerkleStore = MerkleStore<RecordingMap<RpoDigest, StoreNode>>;
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct Node {
pub struct StoreNode {
left: RpoDigest,
right: RpoDigest,
}
/// An in-memory data store for Merkle-lized data.
/// An in-memory data store for Merkelized data.
///
/// This is a in memory data store for Merkle trees, this store allows all the nodes of multiple
/// trees to live as long as necessary and without duplication, this allows the implementation of
@@ -41,26 +52,33 @@ pub struct Node {
/// # let T1 = MerkleTree::new([A, B, C, D, E, F, G, H1].to_vec()).expect("even number of leaves provided");
/// # let ROOT0 = T0.root();
/// # let ROOT1 = T1.root();
/// let mut store = MerkleStore::new();
/// let mut store: MerkleStore = MerkleStore::new();
///
/// // the store is initialized with the SMT empty nodes
/// assert_eq!(store.num_internal_nodes(), 255);
///
/// let tree1 = MerkleTree::new(vec![A, B, C, D, E, F, G, H0]).unwrap();
/// let tree2 = MerkleTree::new(vec![A, B, C, D, E, F, G, H1]).unwrap();
///
/// // populates the store with two merkle trees, common nodes are shared
/// store.add_merkle_tree([A, B, C, D, E, F, G, H0]);
/// store.add_merkle_tree([A, B, C, D, E, F, G, H1]);
/// store.extend(tree1.inner_nodes());
/// store.extend(tree2.inner_nodes());
///
/// // every leaf except the last are the same
/// for i in 0..7 {
/// let d0 = store.get_node(ROOT0, NodeIndex::new(3, i)).unwrap();
/// let d1 = store.get_node(ROOT1, NodeIndex::new(3, i)).unwrap();
/// let idx0 = NodeIndex::new(3, i).unwrap();
/// let d0 = store.get_node(ROOT0, idx0).unwrap();
/// let idx1 = NodeIndex::new(3, i).unwrap();
/// let d1 = store.get_node(ROOT1, idx1).unwrap();
/// assert_eq!(d0, d1, "Both trees have the same leaf at pos {i}");
/// }
///
/// // The leafs A-B-C-D are the same for both trees, so are their 2 immediate parents
/// for i in 0..4 {
/// let d0 = store.get_path(ROOT0, NodeIndex::new(3, i)).unwrap();
/// let d1 = store.get_path(ROOT1, NodeIndex::new(3, i)).unwrap();
/// let idx0 = NodeIndex::new(3, i).unwrap();
/// let d0 = store.get_path(ROOT0, idx0).unwrap();
/// let idx1 = NodeIndex::new(3, i).unwrap();
/// let d1 = store.get_path(ROOT1, idx1).unwrap();
/// assert_eq!(d0.path[0..2], d1.path[0..2], "Both sub-trees are equal up to two levels");
/// }
///
@@ -69,82 +87,27 @@ pub struct Node {
/// assert_eq!(store.num_internal_nodes() - 255, 10);
/// ```
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct MerkleStore {
nodes: BTreeMap<RpoDigest, Node>,
pub struct MerkleStore<T: KvMap<RpoDigest, StoreNode> = BTreeMap<RpoDigest, StoreNode>> {
nodes: T,
}
impl Default for MerkleStore {
impl<T: KvMap<RpoDigest, StoreNode>> Default for MerkleStore<T> {
fn default() -> Self {
Self::new()
}
}
impl MerkleStore {
impl<T: KvMap<RpoDigest, StoreNode>> MerkleStore<T> {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates an empty `MerkleStore` instance.
pub fn new() -> MerkleStore {
pub fn new() -> MerkleStore<T> {
// pre-populate the store with the empty hashes
let subtrees = EmptySubtreeRoots::empty_hashes(255);
let nodes = subtrees
.iter()
.rev()
.copied()
.zip(subtrees.iter().rev().skip(1).copied())
.map(|(child, parent)| {
(
parent,
Node {
left: child,
right: child,
},
)
})
.collect();
let nodes = empty_hashes().into_iter().collect();
MerkleStore { nodes }
}
/// Appends the provided merkle tree represented by its `leaves` to the set.
pub fn with_merkle_tree<I>(mut self, leaves: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = Word>,
{
self.add_merkle_tree(leaves)?;
Ok(self)
}
/// Appends the provided sparse merkle tree represented by its `entries` to the set.
pub fn with_sparse_merkle_tree<R, I>(mut self, entries: R) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
self.add_sparse_merkle_tree(entries)?;
Ok(self)
}
/// Appends the provided merkle path set.
pub fn with_merkle_path(
mut self,
index_value: u64,
node: Word,
path: MerklePath,
) -> Result<Self, MerkleError> {
self.add_merkle_path(index_value, node, path)?;
Ok(self)
}
/// Appends the provided merkle path set.
pub fn with_merkle_paths<I>(mut self, paths: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
{
self.add_merkle_paths(paths)?;
Ok(self)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
@@ -156,27 +119,24 @@ impl MerkleStore {
/// Returns the node at `index` rooted on the tree `root`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_node(&self, root: Word, index: NodeIndex) -> Result<Word, MerkleError> {
let mut hash: RpoDigest = root.into();
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in
/// the store.
pub fn get_node(&self, root: RpoDigest, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
let mut hash = root;
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes
.get(&hash)
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash))?;
for bit in index.bit_iterator().rev() {
let node = self
.nodes
.get(&hash)
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
hash = if bit { node.right } else { node.left }
for i in (0..index.depth()).rev() {
let node = self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash, index))?;
let bit = (index.value() >> i) & 1;
hash = if bit == 0 { node.left } else { node.right }
}
Ok(hash.into())
Ok(hash)
}
/// Returns the node at the specified `index` and its opening to the `root`.
@@ -184,31 +144,27 @@ impl MerkleStore {
/// The path starts at the sibling of the target leaf.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_path(&self, root: Word, index: NodeIndex) -> Result<ValuePath, MerkleError> {
let mut hash: RpoDigest = root.into();
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in
/// the store.
pub fn get_path(&self, root: RpoDigest, index: NodeIndex) -> Result<ValuePath, MerkleError> {
let mut hash = root;
let mut path = Vec::with_capacity(index.depth().into());
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes
.get(&hash)
.ok_or(MerkleError::RootNotInStore(hash.into()))?;
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash))?;
for bit in index.bit_iterator().rev() {
let node = self
.nodes
.get(&hash)
.ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
for i in (0..index.depth()).rev() {
let node = self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash, index))?;
hash = if bit {
path.push(node.left.into());
node.right
} else {
path.push(node.right.into());
let bit = (index.value() >> i) & 1;
hash = if bit == 0 {
path.push(node.right);
node.left
} else {
path.push(node.left);
node.right
}
}
@@ -216,90 +172,114 @@ impl MerkleStore {
path.reverse();
Ok(ValuePath {
value: hash.into(),
value: hash,
path: MerklePath::new(path),
})
}
/// Reconstructs a path from the root until a leaf or empty node and returns its depth.
///
/// The `tree_depth` parameter defines up to which depth the tree will be traversed, starting
/// from `root`. The maximum value the argument accepts is [u64::BITS].
///
/// The traversed path from leaf to root will start at the least significant bit of `index`,
/// and will be executed for `tree_depth` bits.
///
/// # Errors
/// Will return an error if:
/// - The provided root is not found.
/// - The path from the root continues to a depth greater than `tree_depth`.
/// - The provided `tree_depth` is greater than `64.
/// - The provided `index` is not valid for a depth equivalent to `tree_depth`. For more
/// information, check [NodeIndex::new].
pub fn get_leaf_depth(
&self,
root: RpoDigest,
tree_depth: u8,
index: u64,
) -> Result<u8, MerkleError> {
// validate depth and index
if tree_depth > 64 {
return Err(MerkleError::DepthTooBig(tree_depth as u64));
}
NodeIndex::new(tree_depth, index)?;
// it's not illegal to have a maximum depth of `0`; we should just return the root in that
// case. this check will simplify the implementation as we could overflow bits for depth
// `0`.
if tree_depth == 0 {
return Ok(0);
}
// check if the root exists, providing the proper error report if it doesn't
let empty = EmptySubtreeRoots::empty_hashes(tree_depth);
let mut hash = root;
if !self.nodes.contains_key(&hash) {
return Err(MerkleError::RootNotInStore(hash));
}
// we traverse from root to leaf, so the path is reversed
let mut path = (index << (64 - tree_depth)).reverse_bits();
// iterate every depth and reconstruct the path from root to leaf
for depth in 0..tree_depth {
// we short-circuit if an empty node has been found
if hash == empty[depth as usize] {
return Ok(depth);
}
// fetch the children pair, mapped by its parent hash
let children = match self.nodes.get(&hash) {
Some(node) => node,
None => return Ok(depth),
};
// traverse down
hash = if path & 1 == 0 { children.left } else { children.right };
path >>= 1;
}
// at max depth assert it doesn't have sub-trees
if self.nodes.contains_key(&hash) {
return Err(MerkleError::DepthTooBig(tree_depth as u64 + 1));
}
// depleted bits; return max depth
Ok(tree_depth)
}
// DATA EXTRACTORS
// --------------------------------------------------------------------------------------------
/// Returns a subset of this Merkle store such that the returned Merkle store contains all
/// nodes which are descendants of the specified roots.
///
/// The roots for which no descendants exist in this Merkle store are ignored.
pub fn subset<I, R>(&self, roots: I) -> MerkleStore<T>
where
I: Iterator<Item = R>,
R: Borrow<RpoDigest>,
{
let mut store = MerkleStore::new();
for root in roots {
let root = *root.borrow();
store.clone_tree_from(root, self);
}
store
}
/// Iterator over the inner nodes of the [MerkleStore].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.nodes.iter().map(|(r, n)| InnerNodeInfo {
value: *r,
left: n.left,
right: n.right,
})
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Adds all the nodes of a Merkle tree represented by `leaves`.
///
/// This will instantiate a Merkle tree using `leaves` and include all the nodes into the
/// store.
///
/// # Errors
///
/// This method may return the following errors:
/// - `DepthTooSmall` if leaves is empty or contains only 1 element
/// - `NumLeavesNotPowerOfTwo` if the number of leaves is not a power-of-two
pub fn add_merkle_tree<I>(&mut self, leaves: I) -> Result<Word, MerkleError>
where
I: IntoIterator<Item = Word>,
{
let leaves: Vec<_> = leaves.into_iter().collect();
if leaves.len() < 2 {
return Err(MerkleError::DepthTooSmall(leaves.len() as u8));
}
let layers = leaves.len().ilog2();
let tree = MerkleTree::new(leaves)?;
let mut depth = 0;
let mut parent_offset = 1;
let mut child_offset = 2;
while depth < layers {
let layer_size = 1usize << depth;
for _ in 0..layer_size {
// merkle tree is using level form representation, so left and right siblings are
// next to each other
let left = tree.nodes[child_offset];
let right = tree.nodes[child_offset + 1];
self.nodes.insert(
tree.nodes[parent_offset].into(),
Node {
left: left.into(),
right: right.into(),
},
);
parent_offset += 1;
child_offset += 2;
}
depth += 1;
}
Ok(tree.nodes[1])
}
/// Adds all the nodes of a Sparse Merkle tree represented by `entries`.
///
/// This will instantiate a Sparse Merkle tree using `entries` and include all the nodes into
/// the store.
///
/// # Errors
///
/// This will return `InvalidEntriesCount` if the length of `entries` is not `63`.
pub fn add_sparse_merkle_tree<R, I>(&mut self, entries: R) -> Result<Word, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)?.with_leaves(entries)?;
for branch in smt.store.branches.values() {
let parent = Rpo256::merge(&[branch.left, branch.right]);
self.nodes.insert(
parent,
Node {
left: branch.left,
right: branch.right,
},
);
}
Ok(smt.root())
}
/// Adds all the nodes of a Merkle path represented by `path`, opening to `node`. Returns the
/// new root.
///
@@ -307,31 +287,21 @@ impl MerkleStore {
/// include all the nodes into the store.
pub fn add_merkle_path(
&mut self,
index_value: u64,
mut node: Word,
index: u64,
node: RpoDigest,
path: MerklePath,
) -> Result<Word, MerkleError> {
let mut index = NodeIndex::new(self.nodes.len() as u8, index_value);
) -> Result<RpoDigest, MerkleError> {
let root = path.inner_nodes(index, node)?.fold(RpoDigest::default(), |_, node| {
let value: RpoDigest = node.value;
let left: RpoDigest = node.left;
let right: RpoDigest = node.right;
for sibling in path {
let (left, right) = match index.is_value_odd() {
true => (sibling, node),
false => (node, sibling),
};
let parent = Rpo256::merge(&[left.into(), right.into()]);
self.nodes.insert(
parent,
Node {
left: left.into(),
right: right.into(),
},
);
debug_assert_eq!(Rpo256::merge(&[left, right]), value);
self.nodes.insert(value, StoreNode { left, right });
index.move_up();
node = parent.into();
}
Ok(node)
node.value
});
Ok(root)
}
/// Adds all the nodes of multiple Merkle paths into the store.
@@ -340,39 +310,23 @@ impl MerkleStore {
/// into the store.
///
/// For further reference, check [MerkleStore::add_merkle_path].
///
/// # Errors
///
/// Every path must resolve to the same root, otherwise this will return an `ConflictingRoots`
/// error.
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<Word, MerkleError>
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<(), MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
I: IntoIterator<Item = (u64, RpoDigest, MerklePath)>,
{
let paths: Vec<(u64, Word, MerklePath)> = paths.into_iter().collect();
let roots: BTreeSet<RpoDigest> = paths
.iter()
.map(|(index, node, path)| path.compute_root(*index, *node).into())
.collect();
if roots.len() != 1 {
return Err(MerkleError::ConflictingRoots(
roots.iter().map(|v| Word::from(*v)).collect(),
));
}
for (index_value, node, path) in paths {
for (index_value, node, path) in paths.into_iter() {
self.add_merkle_path(index_value, node, path)?;
}
Ok(roots.iter().next().unwrap().into())
Ok(())
}
/// Appends the provided [MerklePathSet] into the store.
///
/// For further reference, check [MerkleStore::add_merkle_path].
pub fn add_merkle_path_set(&mut self, path_set: &MerklePathSet) -> Result<Word, MerkleError> {
pub fn add_merkle_path_set(
&mut self,
path_set: &MerklePathSet,
) -> Result<RpoDigest, MerkleError> {
let root = path_set.root();
for (index, path) in path_set.to_paths() {
self.add_merkle_path(index, path.value, path.path)?;
@@ -383,15 +337,15 @@ impl MerkleStore {
/// Sets a node to `value`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in
/// the store.
pub fn set_node(
&mut self,
mut root: Word,
mut root: RpoDigest,
index: NodeIndex,
value: Word,
value: RpoDigest,
) -> Result<RootPath, MerkleError> {
let node = value;
let ValuePath { value, path } = self.get_path(root, index)?;
@@ -404,54 +358,141 @@ impl MerkleStore {
Ok(RootPath { root, path })
}
pub fn merge_roots(&mut self, root1: Word, root2: Word) -> Result<Word, MerkleError> {
let root1: RpoDigest = root1.into();
let root2: RpoDigest = root2.into();
/// Merges two elements and adds the resulting node into the store.
///
/// Merges arbitrary values. They may be leafs, nodes, or a mixture of both.
pub fn merge_roots(
&mut self,
left_root: RpoDigest,
right_root: RpoDigest,
) -> Result<RpoDigest, MerkleError> {
let parent = Rpo256::merge(&[left_root, right_root]);
self.nodes.insert(
parent,
StoreNode {
left: left_root,
right: right_root,
},
);
if !self.nodes.contains_key(&root1) {
Err(MerkleError::NodeNotInStore(
root1.into(),
NodeIndex::new(0, 0),
))
} else if !self.nodes.contains_key(&root1) {
Err(MerkleError::NodeNotInStore(
root2.into(),
NodeIndex::new(0, 0),
))
} else {
let parent: Word = Rpo256::merge(&[root1, root2]).into();
self.nodes.insert(
parent.into(),
Node {
left: root1,
right: root2,
},
);
Ok(parent)
}
Ok(parent)
// DESTRUCTURING
// --------------------------------------------------------------------------------------------
/// Returns the inner storage of this MerkleStore while consuming `self`.
pub fn into_inner(self) -> T {
self.nodes
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
/// Recursively clones a tree with the specified root from the specified source into self.
///
/// If the source store does not contain a tree with the specified root, this is a noop.
fn clone_tree_from(&mut self, root: RpoDigest, source: &Self) {
// process the node only if it is in the source
if let Some(node) = source.nodes.get(&root) {
// if the node has already been inserted, no need to process it further as all of its
// descendants should be already cloned from the source store
if self.nodes.insert(root, *node).is_none() {
self.clone_tree_from(node.left, source);
self.clone_tree_from(node.right, source);
}
}
}
}
// CONVERSIONS
// ================================================================================================
impl<T: KvMap<RpoDigest, StoreNode>> From<&MerkleTree> for MerkleStore<T> {
fn from(value: &MerkleTree) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
Self { nodes }
}
}
impl<T: KvMap<RpoDigest, StoreNode>> From<&SimpleSmt> for MerkleStore<T> {
fn from(value: &SimpleSmt) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
Self { nodes }
}
}
impl<T: KvMap<RpoDigest, StoreNode>> From<&Mmr> for MerkleStore<T> {
fn from(value: &Mmr) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
Self { nodes }
}
}
impl<T: KvMap<RpoDigest, StoreNode>> From<&TieredSmt> for MerkleStore<T> {
fn from(value: &TieredSmt) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
Self { nodes }
}
}
impl<T: KvMap<RpoDigest, StoreNode>> From<T> for MerkleStore<T> {
fn from(values: T) -> Self {
let nodes = values.into_iter().chain(empty_hashes().into_iter()).collect();
Self { nodes }
}
}
impl<T: KvMap<RpoDigest, StoreNode>> FromIterator<InnerNodeInfo> for MerkleStore<T> {
fn from_iter<I: IntoIterator<Item = InnerNodeInfo>>(iter: I) -> Self {
let nodes = combine_nodes_with_empty_hashes(iter.into_iter()).collect();
Self { nodes }
}
}
impl<T: KvMap<RpoDigest, StoreNode>> FromIterator<(RpoDigest, StoreNode)> for MerkleStore<T> {
fn from_iter<I: IntoIterator<Item = (RpoDigest, StoreNode)>>(iter: I) -> Self {
let nodes = iter.into_iter().chain(empty_hashes().into_iter()).collect();
Self { nodes }
}
}
// ITERATORS
// ================================================================================================
impl<T: KvMap<RpoDigest, StoreNode>> Extend<InnerNodeInfo> for MerkleStore<T> {
fn extend<I: IntoIterator<Item = InnerNodeInfo>>(&mut self, iter: I) {
self.nodes.extend(iter.into_iter().map(|info| {
(
info.value,
StoreNode {
left: info.left,
right: info.right,
},
)
}));
}
}
// SERIALIZATION
// ================================================================================================
impl Serializable for Node {
impl Serializable for StoreNode {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
self.left.write_into(target);
self.right.write_into(target);
}
}
impl Deserializable for Node {
impl Deserializable for StoreNode {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let left = RpoDigest::read_from(source)?;
let right = RpoDigest::read_from(source)?;
Ok(Node { left, right })
Ok(StoreNode { left, right })
}
}
impl Serializable for MerkleStore {
impl<T: KvMap<RpoDigest, StoreNode>> Serializable for MerkleStore<T> {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_u64(self.nodes.len() as u64);
@@ -462,17 +503,55 @@ impl Serializable for MerkleStore {
}
}
impl Deserializable for MerkleStore {
impl<T: KvMap<RpoDigest, StoreNode>> Deserializable for MerkleStore<T> {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let len = source.read_u64()?;
let mut nodes: BTreeMap<RpoDigest, Node> = BTreeMap::new();
let mut nodes: Vec<(RpoDigest, StoreNode)> = Vec::with_capacity(len as usize);
for _ in 0..len {
let key = RpoDigest::read_from(source)?;
let value = Node::read_from(source)?;
nodes.insert(key, value);
let value = StoreNode::read_from(source)?;
nodes.push((key, value));
}
Ok(MerkleStore { nodes })
Ok(nodes.into_iter().collect())
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Creates empty hashes for all the subtrees of a tree with a max depth of 255.
fn empty_hashes() -> impl IntoIterator<Item = (RpoDigest, StoreNode)> {
let subtrees = EmptySubtreeRoots::empty_hashes(255);
subtrees.iter().rev().copied().zip(subtrees.iter().rev().skip(1).copied()).map(
|(child, parent)| {
(
parent,
StoreNode {
left: child,
right: child,
},
)
},
)
}
/// Consumes an iterator of [InnerNodeInfo] and returns an iterator of `(value, node)` tuples
/// which includes the nodes associate with roots of empty subtrees up to a depth of 255.
fn combine_nodes_with_empty_hashes(
nodes: impl IntoIterator<Item = InnerNodeInfo>,
) -> impl Iterator<Item = (RpoDigest, StoreNode)> {
nodes
.into_iter()
.map(|info| {
(
info.value,
StoreNode {
left: info.left,
right: info.right,
},
)
})
.chain(empty_hashes().into_iter())
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,485 @@
use super::{
BTreeMap, BTreeSet, EmptySubtreeRoots, Felt, InnerNodeInfo, MerkleError, MerklePath, NodeIndex,
Rpo256, RpoDigest, StarkField, Vec, Word, ZERO,
};
use core::cmp;
#[cfg(test)]
mod tests;
// TIERED SPARSE MERKLE TREE
// ================================================================================================
/// Tiered (compacted) Sparse Merkle tree mapping 256-bit keys to 256-bit values. Both keys and
/// values are represented by 4 field elements.
///
/// Leaves in the tree can exist only on specific depths called "tiers". These depths are: 16, 32,
/// 48, and 64. Initially, when a tree is empty, it is equivalent to an empty Sparse Merkle tree
/// of depth 64 (i.e., leaves at depth 64 are set to [ZERO; 4]). As non-empty values are inserted
/// into the tree they are added to the first available tier.
///
/// For example, when the first key-value is inserted, it will be stored in a node at depth 16
/// such that the first 16 bits of the key determine the position of the node at depth 16. If
/// another value with a key sharing the same 16-bit prefix is inserted, both values move into
/// the next tier (depth 32). This process is repeated until values end up at tier 64. If multiple
/// values have keys with a common 64-bit prefix, such key-value pairs are stored in a sorted list
/// at the last tier (depth = 64).
///
/// To differentiate between internal and leaf nodes, node values are computed as follows:
/// - Internal nodes: hash(left_child, right_child).
/// - Leaf node at depths 16, 32, or 64: hash(rem_key, value, domain=depth).
/// - Leaf node at depth 64: hash([rem_key_0, value_0, ..., rem_key_n, value_n, domain=64]).
///
/// Where rem_key is computed by replacing d most significant bits of the key with zeros where d
/// is depth (i.e., for a leaf at depth 16, we replace 16 most significant bits of the key with 0).
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TieredSmt {
root: RpoDigest,
nodes: BTreeMap<NodeIndex, RpoDigest>,
upper_leaves: BTreeMap<NodeIndex, RpoDigest>, // node_index |-> key map
bottom_leaves: BTreeMap<u64, BottomLeaf>, // leaves of depth 64
values: BTreeMap<RpoDigest, Word>,
}
impl TieredSmt {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// The number of levels between tiers.
const TIER_SIZE: u8 = 16;
/// Depths at which leaves can exist in a tiered SMT.
const TIER_DEPTHS: [u8; 4] = [16, 32, 48, 64];
/// Maximum node depth. This is also the bottom tier of the tree.
const MAX_DEPTH: u8 = 64;
/// Value of an empty leaf.
pub const EMPTY_VALUE: Word = super::empty_roots::EMPTY_WORD;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Returns a new [TieredSmt] instantiated with the specified key-value pairs.
///
/// # Errors
/// Returns an error if the provided entries contain multiple values for the same key.
pub fn with_leaves<R, I>(entries: R) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (RpoDigest, Word)> + ExactSizeIterator,
{
// create an empty tree
let mut tree = Self::default();
// append leaves to the tree returning an error if a duplicate entry for the same key
// is found
let mut empty_entries = BTreeSet::new();
for (key, value) in entries {
let old_value = tree.insert(key, value);
if old_value != Self::EMPTY_VALUE || empty_entries.contains(&key) {
return Err(MerkleError::DuplicateValuesForKey(key));
}
// if we've processed an empty entry, add the key to the set of empty entry keys, and
// if this key was already in the set, return an error
if value == Self::EMPTY_VALUE && !empty_entries.insert(key) {
return Err(MerkleError::DuplicateValuesForKey(key));
}
}
Ok(tree)
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub const fn root(&self) -> RpoDigest {
self.root
}
/// Returns a node at the specified index.
///
/// # Errors
/// Returns an error if:
/// - The specified index depth is 0 or greater than 64.
/// - The node with the specified index does not exists in the Merkle tree. This is possible
/// when a leaf node with the same index prefix exists at a tier higher than the requested
/// node.
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
self.validate_node_access(index)?;
Ok(self.get_node_unchecked(&index))
}
/// Returns a Merkle path from the node at the specified index to the root.
///
/// The node itself is not included in the path.
///
/// # Errors
/// Returns an error if:
/// - The specified index depth is 0 or greater than 64.
/// - The node with the specified index does not exists in the Merkle tree. This is possible
/// when a leaf node with the same index prefix exists at a tier higher than the node to
/// which the path is requested.
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
self.validate_node_access(index)?;
let mut path = Vec::with_capacity(index.depth() as usize);
for _ in 0..index.depth() {
let node = self.get_node_unchecked(&index.sibling());
path.push(node);
index.move_up();
}
Ok(path.into())
}
/// Returns the value associated with the specified key.
///
/// If nothing was inserted into this tree for the specified key, [ZERO; 4] is returned.
pub fn get_value(&self, key: RpoDigest) -> Word {
match self.values.get(&key) {
Some(value) => *value,
None => Self::EMPTY_VALUE,
}
}
// STATE MUTATORS
// --------------------------------------------------------------------------------------------
/// Inserts the provided value into the tree under the specified key and returns the value
/// previously stored under this key.
///
/// If the value for the specified key was not previously set, [ZERO; 4] is returned.
pub fn insert(&mut self, key: RpoDigest, value: Word) -> Word {
// insert the value into the key-value map, and if nothing has changed, return
let old_value = self.values.insert(key, value).unwrap_or(Self::EMPTY_VALUE);
if old_value == value {
return old_value;
}
// determine the index for the value node; this index could have 3 different meanings:
// - it points to a root of an empty subtree (excluding depth = 64); in this case, we can
// replace the node with the value node immediately.
// - it points to a node at the bottom tier (i.e., depth = 64); in this case, we need to
// process bottom-tier insertion which will be handled by insert_node().
// - it points to a leaf node; this node could be a node with the same key or a different
// key with a common prefix; in the latter case, we'll need to move the leaf to a lower
// tier; for this scenario the `leaf_key` will contain the key of the leaf node
let (mut index, leaf_key) = self.get_insert_location(&key);
// if the returned index points to a leaf, and this leaf is for a different key, we need
// to move the leaf to a lower tier
if let Some(other_key) = leaf_key {
if other_key != key {
// determine how far down the tree should we move the existing leaf
let common_prefix_len = get_common_prefix_tier(&key, &other_key);
let depth = cmp::min(common_prefix_len + Self::TIER_SIZE, Self::MAX_DEPTH);
// move the leaf to the new location; this requires first removing the existing
// index, re-computing node value, and inserting the node at a new location
let other_index = key_to_index(&other_key, depth);
let other_value = *self.values.get(&other_key).expect("no value for other key");
self.upper_leaves.remove(&index).expect("other node key not in map");
self.insert_node(other_index, other_key, other_value);
// the new leaf also needs to move down to the same tier
index = key_to_index(&key, depth);
}
}
// insert the node and return the old value
self.insert_node(index, key, value);
old_value
}
// ITERATORS
// --------------------------------------------------------------------------------------------
/// Returns an iterator over all inner nodes of this [TieredSmt] (i.e., nodes not at depths 16
/// 32, 48, or 64).
///
/// The iterator order is unspecified.
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.nodes.iter().filter_map(|(index, node)| {
if is_inner_node(index) {
Some(InnerNodeInfo {
value: *node,
left: self.get_node_unchecked(&index.left_child()),
right: self.get_node_unchecked(&index.right_child()),
})
} else {
None
}
})
}
/// Returns an iterator over upper leaves (i.e., depth = 16, 32, or 48) for this [TieredSmt].
///
/// Each yielded item is a (node, key, value) tuple where key is a full un-truncated key (i.e.,
/// with key[3] element unmodified).
///
/// The iterator order is unspecified.
pub fn upper_leaves(&self) -> impl Iterator<Item = (RpoDigest, RpoDigest, Word)> + '_ {
self.upper_leaves.iter().map(|(index, key)| {
let node = self.get_node_unchecked(index);
let value = self.get_value(*key);
(node, *key, value)
})
}
/// Returns an iterator over bottom leaves (i.e., depth = 64) of this [TieredSmt].
///
/// Each yielded item consists of the hash of the leaf and its contents, where contents is
/// a vector containing key-value pairs of entries storied in this leaf. Note that keys are
/// un-truncated keys (i.e., with key[3] element unmodified).
///
/// The iterator order is unspecified.
pub fn bottom_leaves(&self) -> impl Iterator<Item = (RpoDigest, Vec<(RpoDigest, Word)>)> + '_ {
self.bottom_leaves.values().map(|leaf| (leaf.hash(), leaf.contents()))
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
/// Checks if the specified index is valid in the context of this Merkle tree.
///
/// # Errors
/// Returns an error if:
/// - The specified index depth is 0 or greater than 64.
/// - The node for the specified index does not exists in the Merkle tree. This is possible
/// when an ancestors of the specified index is a leaf node.
fn validate_node_access(&self, index: NodeIndex) -> Result<(), MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > Self::MAX_DEPTH {
return Err(MerkleError::DepthTooBig(index.depth() as u64));
} else {
// make sure that there are no leaf nodes in the ancestors of the index; since leaf
// nodes can live at specific depth, we just need to check these depths.
let tier = get_index_tier(&index);
let mut tier_index = index;
for &depth in Self::TIER_DEPTHS[..tier].iter().rev() {
tier_index.move_up_to(depth);
if self.upper_leaves.contains_key(&tier_index) {
return Err(MerkleError::NodeNotInSet(index));
}
}
}
Ok(())
}
/// Returns a node at the specified index. If the node does not exist at this index, a root
/// for an empty subtree at the index's depth is returned.
///
/// Unlike [TieredSmt::get_node()] this does not perform any checks to verify that the returned
/// node is valid in the context of this tree.
fn get_node_unchecked(&self, index: &NodeIndex) -> RpoDigest {
match self.nodes.get(index) {
Some(node) => *node,
None => EmptySubtreeRoots::empty_hashes(Self::MAX_DEPTH)[index.depth() as usize],
}
}
/// Returns an index at which a node for the specified key should be inserted. If a leaf node
/// already exists at that index, returns the key associated with that leaf node.
///
/// In case the index falls into the bottom tier (depth = 64), leaf node key is not returned
/// as the bottom tier may contain multiple key-value pairs in the same leaf.
fn get_insert_location(&self, key: &RpoDigest) -> (NodeIndex, Option<RpoDigest>) {
// traverse the tree from the root down checking nodes at tiers 16, 32, and 48. Return if
// a node at any of the tiers is either a leaf or a root of an empty subtree.
let mse = Word::from(key)[3].as_int();
for depth in (Self::TIER_DEPTHS[0]..Self::MAX_DEPTH).step_by(Self::TIER_SIZE as usize) {
let index = NodeIndex::new_unchecked(depth, mse >> (Self::MAX_DEPTH - depth));
if let Some(leaf_key) = self.upper_leaves.get(&index) {
return (index, Some(*leaf_key));
} else if !self.nodes.contains_key(&index) {
return (index, None);
}
}
// if we got here, that means all of the nodes checked so far are internal nodes, and
// the new node would need to be inserted in the bottom tier.
let index = NodeIndex::new_unchecked(Self::MAX_DEPTH, mse);
(index, None)
}
/// Inserts the provided key-value pair at the specified index and updates the root of this
/// Merkle tree by recomputing the path to the root.
fn insert_node(&mut self, mut index: NodeIndex, key: RpoDigest, value: Word) {
let depth = index.depth();
// insert the key into index-key map and compute the new value of the node
let mut node = if index.depth() == Self::MAX_DEPTH {
// for the bottom tier, we add the key-value pair to the existing leaf, or create a
// new leaf with this key-value pair
self.bottom_leaves
.entry(index.value())
.and_modify(|leaves| leaves.add_value(key, value))
.or_insert(BottomLeaf::new(key, value))
.hash()
} else {
// for the upper tiers, we just update the index-key map and compute the value of the
// node
self.upper_leaves.insert(index, key);
// the node value is computed as: hash(remaining_key || value, domain = depth)
let remaining_path = get_remaining_path(key, depth.into());
Rpo256::merge_in_domain(&[remaining_path, value.into()], depth.into())
};
// insert the node and update the path from the node to the root
for _ in 0..index.depth() {
self.nodes.insert(index, node);
let sibling = self.get_node_unchecked(&index.sibling());
node = Rpo256::merge(&index.build_node(node, sibling));
index.move_up();
}
// update the root
self.nodes.insert(NodeIndex::root(), node);
self.root = node;
}
}
impl Default for TieredSmt {
fn default() -> Self {
Self {
root: EmptySubtreeRoots::empty_hashes(Self::MAX_DEPTH)[0],
nodes: BTreeMap::new(),
upper_leaves: BTreeMap::new(),
bottom_leaves: BTreeMap::new(),
values: BTreeMap::new(),
}
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Returns the remaining path for the specified key at the specified depth.
///
/// Remaining path is computed by setting n most significant bits of the key to zeros, where n is
/// the specified depth.
fn get_remaining_path(key: RpoDigest, depth: u32) -> RpoDigest {
let mut key = Word::from(key);
key[3] = if depth == 64 {
ZERO
} else {
// remove `depth` bits from the most significant key element
((key[3].as_int() << depth) >> depth).into()
};
key.into()
}
/// Returns index for the specified key inserted at the specified depth.
///
/// The value for the key is computed by taking n most significant bits from the most significant
/// element of the key, where n is the specified depth.
fn key_to_index(key: &RpoDigest, depth: u8) -> NodeIndex {
let mse = Word::from(key)[3].as_int();
let value = match depth {
16 | 32 | 48 | 64 => mse >> ((TieredSmt::MAX_DEPTH - depth) as u32),
_ => unreachable!("invalid depth: {depth}"),
};
NodeIndex::new_unchecked(depth, value)
}
/// Returns tiered common prefix length between the most significant elements of the provided keys.
///
/// Specifically:
/// - returns 64 if the most significant elements are equal.
/// - returns 48 if the common prefix is between 48 and 63 bits.
/// - returns 32 if the common prefix is between 32 and 47 bits.
/// - returns 16 if the common prefix is between 16 and 31 bits.
/// - returns 0 if the common prefix is fewer than 16 bits.
fn get_common_prefix_tier(key1: &RpoDigest, key2: &RpoDigest) -> u8 {
let e1 = Word::from(key1)[3].as_int();
let e2 = Word::from(key2)[3].as_int();
let ex = (e1 ^ e2).leading_zeros() as u8;
(ex / 16) * 16
}
/// Returns a tier for the specified index.
///
/// The tiers are defined as follows:
/// - Tier 0: depth 0 through 16 (inclusive).
/// - Tier 1: depth 17 through 32 (inclusive).
/// - Tier 2: depth 33 through 48 (inclusive).
/// - Tier 3: depth 49 through 64 (inclusive).
const fn get_index_tier(index: &NodeIndex) -> usize {
debug_assert!(index.depth() <= TieredSmt::MAX_DEPTH, "invalid depth");
match index.depth() {
0..=16 => 0,
17..=32 => 1,
33..=48 => 2,
_ => 3,
}
}
/// Returns true if the specified index is an index for an inner node (i.e., the depth is not 16,
/// 32, 48, or 64).
const fn is_inner_node(index: &NodeIndex) -> bool {
!matches!(index.depth(), 16 | 32 | 48 | 64)
}
// BOTTOM LEAF
// ================================================================================================
/// Stores contents of the bottom leaf (i.e., leaf at depth = 64) in a [TieredSmt].
///
/// Bottom leaf can contain one or more key-value pairs all sharing the same 64-bit key prefix.
/// The values are sorted by key to make sure the structure of the leaf is independent of the
/// insertion order. This guarantees that a leaf with the same set of key-value pairs always has
/// the same hash value.
#[derive(Debug, Clone, PartialEq, Eq)]
struct BottomLeaf {
prefix: u64,
values: BTreeMap<[u64; 4], Word>,
}
impl BottomLeaf {
/// Returns a new [BottomLeaf] with a single key-value pair added.
pub fn new(key: RpoDigest, value: Word) -> Self {
let prefix = Word::from(key)[3].as_int();
let mut values = BTreeMap::new();
let key = get_remaining_path(key, TieredSmt::MAX_DEPTH as u32);
values.insert(key.into(), value);
Self { prefix, values }
}
/// Adds a new key-value pair to this leaf.
pub fn add_value(&mut self, key: RpoDigest, value: Word) {
let key = get_remaining_path(key, TieredSmt::MAX_DEPTH as u32);
self.values.insert(key.into(), value);
}
/// Computes a hash of this leaf.
pub fn hash(&self) -> RpoDigest {
let mut elements = Vec::with_capacity(self.values.len() * 2);
for (key, val) in self.values.iter() {
key.iter().for_each(|&v| elements.push(Felt::new(v)));
elements.extend_from_slice(val.as_slice());
}
// TODO: hash in domain
Rpo256::hash_elements(&elements)
}
/// Returns contents of this leaf as a vector of (key, value) pairs.
///
/// The keys are returned in their un-truncated form.
pub fn contents(&self) -> Vec<(RpoDigest, Word)> {
self.values
.iter()
.map(|(key, val)| {
let key = RpoDigest::from([
Felt::new(key[0]),
Felt::new(key[1]),
Felt::new(key[2]),
Felt::new(self.prefix),
]);
(key, *val)
})
.collect()
}
}

View File

@@ -0,0 +1,441 @@
use super::{
super::{super::ONE, Felt, MerkleStore, WORD_SIZE, ZERO},
get_remaining_path, EmptySubtreeRoots, InnerNodeInfo, NodeIndex, Rpo256, RpoDigest, TieredSmt,
Vec, Word,
};
#[test]
fn tsmt_insert_one() {
let mut smt = TieredSmt::default();
let mut store = MerkleStore::default();
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let value = [ONE; WORD_SIZE];
// since the tree is empty, the first node will be inserted at depth 16 and the index will be
// 16 most significant bits of the key
let index = NodeIndex::make(16, raw >> 48);
let leaf_node = build_leaf_node(key, value, 16);
let tree_root = store.set_node(smt.root(), index, leaf_node).unwrap().root;
smt.insert(key, value);
assert_eq!(smt.root(), tree_root);
// make sure the value was inserted, and the node is at the expected index
assert_eq!(smt.get_value(key), value);
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
// make sure the paths we get from the store and the tree match
let expected_path = store.get_path(tree_root, index).unwrap();
assert_eq!(smt.get_path(index).unwrap(), expected_path.path);
// make sure inner nodes match
let expected_nodes = get_non_empty_nodes(&store);
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
assert_eq!(actual_nodes.len(), expected_nodes.len());
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
// make sure leaves are returned correctly
let mut leaves = smt.upper_leaves();
assert_eq!(leaves.next(), Some((leaf_node, key, value)));
assert_eq!(leaves.next(), None);
}
#[test]
fn tsmt_insert_two_16() {
let mut smt = TieredSmt::default();
let mut store = MerkleStore::default();
// --- insert the first value ---------------------------------------------
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
let val_a = [ONE; WORD_SIZE];
smt.insert(key_a, val_a);
// --- insert the second value --------------------------------------------
// the key for this value has the same 16-bit prefix as the key for the first value,
// thus, on insertions, both values should be pushed to depth 32 tier
let raw_b = 0b_10101010_10101010_10011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
let val_b = [Felt::new(2); WORD_SIZE];
smt.insert(key_b, val_b);
// --- build Merkle store with equivalent data ----------------------------
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(32, raw_a >> 32);
let leaf_node_a = build_leaf_node(key_a, val_a, 32);
tree_root = store.set_node(tree_root, index_a, leaf_node_a).unwrap().root;
let index_b = NodeIndex::make(32, raw_b >> 32);
let leaf_node_b = build_leaf_node(key_b, val_b, 32);
tree_root = store.set_node(tree_root, index_b, leaf_node_b).unwrap().root;
// --- verify that data is consistent between store and tree --------------
assert_eq!(smt.root(), tree_root);
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
// all prior state - so, we don't check that the number of inner nodes is the same in both
let expected_nodes = get_non_empty_nodes(&store);
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
// make sure leaves are returned correctly
let mut leaves = smt.upper_leaves();
assert_eq!(leaves.next(), Some((leaf_node_a, key_a, val_a)));
assert_eq!(leaves.next(), Some((leaf_node_b, key_b, val_b)));
assert_eq!(leaves.next(), None);
}
#[test]
fn tsmt_insert_two_32() {
let mut smt = TieredSmt::default();
let mut store = MerkleStore::default();
// --- insert the first value ---------------------------------------------
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
let val_a = [ONE; WORD_SIZE];
smt.insert(key_a, val_a);
// --- insert the second value --------------------------------------------
// the key for this value has the same 32-bit prefix as the key for the first value,
// thus, on insertions, both values should be pushed to depth 48 tier
let raw_b = 0b_10101010_10101010_00011111_11111111_00010110_10010011_11100000_00000000_u64;
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
let val_b = [Felt::new(2); WORD_SIZE];
smt.insert(key_b, val_b);
// --- build Merkle store with equivalent data ----------------------------
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(48, raw_a >> 16);
let leaf_node_a = build_leaf_node(key_a, val_a, 48);
tree_root = store.set_node(tree_root, index_a, leaf_node_a).unwrap().root;
let index_b = NodeIndex::make(48, raw_b >> 16);
let leaf_node_b = build_leaf_node(key_b, val_b, 48);
tree_root = store.set_node(tree_root, index_b, leaf_node_b).unwrap().root;
// --- verify that data is consistent between store and tree --------------
assert_eq!(smt.root(), tree_root);
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
// all prior state - so, we don't check that the number of inner nodes is the same in both
let expected_nodes = get_non_empty_nodes(&store);
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
}
#[test]
fn tsmt_insert_three() {
let mut smt = TieredSmt::default();
let mut store = MerkleStore::default();
// --- insert the first value ---------------------------------------------
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
let val_a = [ONE; WORD_SIZE];
smt.insert(key_a, val_a);
// --- insert the second value --------------------------------------------
// the key for this value has the same 16-bit prefix as the key for the first value,
// thus, on insertions, both values should be pushed to depth 32 tier
let raw_b = 0b_10101010_10101010_10011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
let val_b = [Felt::new(2); WORD_SIZE];
smt.insert(key_b, val_b);
// --- insert the third value ---------------------------------------------
// the key for this value has the same 16-bit prefix as the keys for the first two,
// values; thus, on insertions, it will be inserted into depth 32 tier, but will not
// affect locations of the other two values
let raw_c = 0b_10101010_10101010_11011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_c = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_c)]);
let val_c = [Felt::new(3); WORD_SIZE];
smt.insert(key_c, val_c);
// --- build Merkle store with equivalent data ----------------------------
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(32, raw_a >> 32);
let leaf_node_a = build_leaf_node(key_a, val_a, 32);
tree_root = store.set_node(tree_root, index_a, leaf_node_a).unwrap().root;
let index_b = NodeIndex::make(32, raw_b >> 32);
let leaf_node_b = build_leaf_node(key_b, val_b, 32);
tree_root = store.set_node(tree_root, index_b, leaf_node_b).unwrap().root;
let index_c = NodeIndex::make(32, raw_c >> 32);
let leaf_node_c = build_leaf_node(key_c, val_c, 32);
tree_root = store.set_node(tree_root, index_c, leaf_node_c).unwrap().root;
// --- verify that data is consistent between store and tree --------------
assert_eq!(smt.root(), tree_root);
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
assert_eq!(smt.get_value(key_c), val_c);
assert_eq!(smt.get_node(index_c).unwrap(), leaf_node_c);
let expected_path = store.get_path(tree_root, index_c).unwrap().path;
assert_eq!(smt.get_path(index_c).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
// all prior state - so, we don't check that the number of inner nodes is the same in both
let expected_nodes = get_non_empty_nodes(&store);
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
}
#[test]
fn tsmt_update() {
let mut smt = TieredSmt::default();
let mut store = MerkleStore::default();
// --- insert a value into the tree ---------------------------------------
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let value_a = [ONE; WORD_SIZE];
smt.insert(key, value_a);
// --- update the value ---------------------------------------------------
let value_b = [Felt::new(2); WORD_SIZE];
smt.insert(key, value_b);
// --- verify consistency -------------------------------------------------
let mut tree_root = get_init_root();
let index = NodeIndex::make(16, raw >> 48);
let leaf_node = build_leaf_node(key, value_b, 16);
tree_root = store.set_node(tree_root, index, leaf_node).unwrap().root;
assert_eq!(smt.root(), tree_root);
assert_eq!(smt.get_value(key), value_b);
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
let expected_path = store.get_path(tree_root, index).unwrap().path;
assert_eq!(smt.get_path(index).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
// all prior state - so, we don't check that the number of inner nodes is the same in both
let expected_nodes = get_non_empty_nodes(&store);
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
}
// BOTTOM TIER TESTS
// ================================================================================================
#[test]
fn tsmt_bottom_tier() {
let mut smt = TieredSmt::default();
let mut store = MerkleStore::default();
// common prefix for the keys
let prefix = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
// --- insert the first value ---------------------------------------------
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(prefix)]);
let val_a = [ONE; WORD_SIZE];
smt.insert(key_a, val_a);
// --- insert the second value --------------------------------------------
// this key has the same 64-bit prefix and thus both values should end up in the same
// node at depth 64
let key_b = RpoDigest::from([ZERO, ONE, ONE, Felt::new(prefix)]);
let val_b = [Felt::new(2); WORD_SIZE];
smt.insert(key_b, val_b);
// --- build Merkle store with equivalent data ----------------------------
let index = NodeIndex::make(64, prefix);
// to build bottom leaf we sort by key starting with the least significant element, thus
// key_b is smaller than key_a.
let leaf_node = build_bottom_leaf_node(&[key_b, key_a], &[val_b, val_a]);
let mut tree_root = get_init_root();
tree_root = store.set_node(tree_root, index, leaf_node).unwrap().root;
// --- verify that data is consistent between store and tree --------------
assert_eq!(smt.root(), tree_root);
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
let expected_path = store.get_path(tree_root, index).unwrap().path;
assert_eq!(smt.get_path(index).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
// all prior state - so, we don't check that the number of inner nodes is the same in both
let expected_nodes = get_non_empty_nodes(&store);
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
// make sure leaves are returned correctly
let mut leaves = smt.bottom_leaves();
assert_eq!(leaves.next(), Some((leaf_node, vec![(key_b, val_b), (key_a, val_a)])));
assert_eq!(leaves.next(), None);
}
#[test]
fn tsmt_bottom_tier_two() {
let mut smt = TieredSmt::default();
let mut store = MerkleStore::default();
// --- insert the first value ---------------------------------------------
let raw_a = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_a = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_a)]);
let val_a = [ONE; WORD_SIZE];
smt.insert(key_a, val_a);
// --- insert the second value --------------------------------------------
// the key for this value has the same 48-bit prefix as the key for the first value,
// thus, on insertions, both should end up in different nodes at depth 64
let raw_b = 0b_10101010_10101010_00011111_11111111_10010110_10010011_01100000_00000000_u64;
let key_b = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw_b)]);
let val_b = [Felt::new(2); WORD_SIZE];
smt.insert(key_b, val_b);
// --- build Merkle store with equivalent data ----------------------------
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(64, raw_a);
let leaf_node_a = build_bottom_leaf_node(&[key_a], &[val_a]);
tree_root = store.set_node(tree_root, index_a, leaf_node_a).unwrap().root;
let index_b = NodeIndex::make(64, raw_b);
let leaf_node_b = build_bottom_leaf_node(&[key_b], &[val_b]);
tree_root = store.set_node(tree_root, index_b, leaf_node_b).unwrap().root;
// --- verify that data is consistent between store and tree --------------
assert_eq!(smt.root(), tree_root);
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
// all prior state - so, we don't check that the number of inner nodes is the same in both
let expected_nodes = get_non_empty_nodes(&store);
let actual_nodes = smt.inner_nodes().collect::<Vec<_>>();
actual_nodes.iter().for_each(|node| assert!(expected_nodes.contains(node)));
// make sure leaves are returned correctly
let mut leaves = smt.bottom_leaves();
assert_eq!(leaves.next(), Some((leaf_node_b, vec![(key_b, val_b)])));
assert_eq!(leaves.next(), Some((leaf_node_a, vec![(key_a, val_a)])));
assert_eq!(leaves.next(), None);
}
// ERROR TESTS
// ================================================================================================
#[test]
fn tsmt_node_not_available() {
let mut smt = TieredSmt::default();
let raw = 0b_10101010_10101010_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let value = [ONE; WORD_SIZE];
// build an index which is just below the inserted leaf node
let index = NodeIndex::make(17, raw >> 47);
// since we haven't inserted the node yet, we should be able to get node and path to this index
assert!(smt.get_node(index).is_ok());
assert!(smt.get_path(index).is_ok());
smt.insert(key, value);
// but once the node is inserted, everything under it should be unavailable
assert!(smt.get_node(index).is_err());
assert!(smt.get_path(index).is_err());
let index = NodeIndex::make(32, raw >> 32);
assert!(smt.get_node(index).is_err());
assert!(smt.get_path(index).is_err());
let index = NodeIndex::make(34, raw >> 30);
assert!(smt.get_node(index).is_err());
assert!(smt.get_path(index).is_err());
let index = NodeIndex::make(50, raw >> 14);
assert!(smt.get_node(index).is_err());
assert!(smt.get_path(index).is_err());
let index = NodeIndex::make(64, raw);
assert!(smt.get_node(index).is_err());
assert!(smt.get_path(index).is_err());
}
// HELPER FUNCTIONS
// ================================================================================================
fn get_init_root() -> RpoDigest {
EmptySubtreeRoots::empty_hashes(64)[0]
}
fn build_leaf_node(key: RpoDigest, value: Word, depth: u8) -> RpoDigest {
let remaining_path = get_remaining_path(key, depth as u32);
Rpo256::merge_in_domain(&[remaining_path, value.into()], depth.into())
}
fn build_bottom_leaf_node(keys: &[RpoDigest], values: &[Word]) -> RpoDigest {
assert_eq!(keys.len(), values.len());
let mut elements = Vec::with_capacity(keys.len());
for (key, val) in keys.iter().zip(values.iter()) {
let mut key = Word::from(key);
key[3] = ZERO;
elements.extend_from_slice(&key);
elements.extend_from_slice(val.as_slice());
}
Rpo256::hash_elements(&elements)
}
fn get_non_empty_nodes(store: &MerkleStore) -> Vec<InnerNodeInfo> {
store
.inner_nodes()
.filter(|node| !is_empty_subtree(&node.value))
.collect::<Vec<_>>()
}
fn is_empty_subtree(node: &RpoDigest) -> bool {
EmptySubtreeRoots::empty_hashes(255).contains(node)
}

View File

@@ -1,21 +0,0 @@
use super::Word;
use crate::utils::string::String;
use core::fmt::{self, Write};
// RE-EXPORTS
// ================================================================================================
pub use winter_utils::{
collections, string, uninit_vector, ByteReader, ByteWriter, Deserializable,
DeserializationError, Serializable, SliceReader,
};
/// Converts a [Word] into hex.
pub fn word_to_hex(w: &Word) -> Result<String, fmt::Error> {
let mut s = String::new();
for byte in w.iter().flat_map(|e| e.to_bytes()) {
write!(s, "{byte:02x}")?;
}
Ok(s)
}

324
src/utils/kv_map.rs Normal file
View File

@@ -0,0 +1,324 @@
use core::cell::RefCell;
use winter_utils::{
collections::{btree_map::IntoIter, BTreeMap, BTreeSet},
Box,
};
// KEY-VALUE MAP TRAIT
// ================================================================================================
/// A trait that defines the interface for a key-value map.
pub trait KvMap<K: Ord + Clone, V: Clone>:
Extend<(K, V)> + FromIterator<(K, V)> + IntoIterator<Item = (K, V)>
{
fn get(&self, key: &K) -> Option<&V>;
fn contains_key(&self, key: &K) -> bool;
fn len(&self) -> usize;
fn is_empty(&self) -> bool {
self.len() == 0
}
fn insert(&mut self, key: K, value: V) -> Option<V>;
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_>;
}
// BTREE MAP `KvMap` IMPLEMENTATION
// ================================================================================================
impl<K: Ord + Clone, V: Clone> KvMap<K, V> for BTreeMap<K, V> {
fn get(&self, key: &K) -> Option<&V> {
self.get(key)
}
fn contains_key(&self, key: &K) -> bool {
self.contains_key(key)
}
fn len(&self) -> usize {
self.len()
}
fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert(key, value)
}
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
Box::new(self.iter())
}
}
// RECORDING MAP
// ================================================================================================
/// A [RecordingMap] that records read requests to the underlying key-value map.
///
/// The data recorder is used to generate a proof for read requests.
///
/// The [RecordingMap] is composed of three parts:
/// - `data`: which contains the current set of key-value pairs in the map.
/// - `updates`: which tracks keys for which values have been since the map was instantiated.
/// updates include both insertions and updates of values under existing keys.
/// - `trace`: which contains the key-value pairs from the original data which have been accesses
/// since the map was instantiated.
#[derive(Debug, Default, Clone, Eq, PartialEq)]
pub struct RecordingMap<K, V> {
data: BTreeMap<K, V>,
updates: BTreeSet<K>,
trace: RefCell<BTreeMap<K, V>>,
}
impl<K: Ord + Clone, V: Clone> RecordingMap<K, V> {
// CONSTRUCTOR
// --------------------------------------------------------------------------------------------
/// Returns a new [RecordingMap] instance initialized with the provided key-value pairs.
/// ([BTreeMap]).
pub fn new(init: impl IntoIterator<Item = (K, V)>) -> Self {
RecordingMap {
data: init.into_iter().collect(),
updates: BTreeSet::new(),
trace: RefCell::new(BTreeMap::new()),
}
}
// FINALIZER
// --------------------------------------------------------------------------------------------
/// Consumes the [RecordingMap] and returns a [BTreeMap] containing the key-value pairs from
/// the initial data set that were read during recording.
pub fn into_proof(self) -> BTreeMap<K, V> {
self.trace.take()
}
// TEST HELPERS
// --------------------------------------------------------------------------------------------
#[cfg(test)]
pub fn trace_len(&self) -> usize {
self.trace.borrow().len()
}
#[cfg(test)]
pub fn updates_len(&self) -> usize {
self.updates.len()
}
}
impl<K: Ord + Clone, V: Clone> KvMap<K, V> for RecordingMap<K, V> {
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns a reference to the value associated with the given key if the value exists.
///
/// If the key is part of the initial data set, the key access is recorded.
fn get(&self, key: &K) -> Option<&V> {
self.data.get(key).map(|value| {
if !self.updates.contains(key) {
self.trace.borrow_mut().insert(key.clone(), value.clone());
}
value
})
}
/// Returns a boolean to indicate whether the given key exists in the data set.
///
/// If the key is part of the initial data set, the key access is recorded.
fn contains_key(&self, key: &K) -> bool {
self.get(key).is_some()
}
/// Returns the number of key-value pairs in the data set.
fn len(&self) -> usize {
self.data.len()
}
// MUTATORS
// --------------------------------------------------------------------------------------------
/// Inserts a key-value pair into the data set.
///
/// If the key already exists in the data set, the value is updated and the old value is
/// returned.
fn insert(&mut self, key: K, value: V) -> Option<V> {
let new_update = self.updates.insert(key.clone());
self.data.insert(key.clone(), value).map(|old_value| {
if new_update {
self.trace.borrow_mut().insert(key, old_value.clone());
}
old_value
})
}
// ITERATION
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the key-value pairs in the data set.
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
Box::new(self.data.iter())
}
}
impl<K: Clone + Ord, V: Clone> Extend<(K, V)> for RecordingMap<K, V> {
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
iter.into_iter().for_each(move |(k, v)| {
self.insert(k, v);
});
}
}
impl<K: Clone + Ord, V: Clone> FromIterator<(K, V)> for RecordingMap<K, V> {
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
Self::new(iter)
}
}
impl<K: Clone + Ord, V: Clone> IntoIterator for RecordingMap<K, V> {
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::*;
const ITEMS: [(u64, u64); 5] = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)];
#[test]
fn test_get_item() {
// instantiate a recording map
let map = RecordingMap::new(ITEMS.to_vec());
// get a few items
let get_items = [0, 1, 2];
for key in get_items.iter() {
map.get(key);
}
// convert the map into a proof
let proof = map.into_proof();
// check that the proof contains the expected values
for (key, value) in ITEMS.iter() {
match get_items.contains(key) {
true => assert_eq!(proof.get(key), Some(value)),
false => assert_eq!(proof.get(key), None),
}
}
}
#[test]
fn test_contains_key() {
// instantiate a recording map
let map = RecordingMap::new(ITEMS.to_vec());
// check if the map contains a few items
let get_items = [0, 1, 2];
for key in get_items.iter() {
map.contains_key(key);
}
// convert the map into a proof
let proof = map.into_proof();
// check that the proof contains the expected values
for (key, _) in ITEMS.iter() {
match get_items.contains(key) {
true => assert_eq!(proof.contains_key(key), true),
false => assert_eq!(proof.contains_key(key), false),
}
}
}
#[test]
fn test_len() {
// instantiate a recording map
let mut map = RecordingMap::new(ITEMS.to_vec());
// length of the map should be equal to the number of items
assert_eq!(map.len(), ITEMS.len());
// inserting entry with key that already exists should not change the length, but it does
// add entries to the trace and update sets
map.insert(4, 5);
assert_eq!(map.len(), ITEMS.len());
assert_eq!(map.trace_len(), 1);
assert_eq!(map.updates_len(), 1);
// inserting entry with new key should increase the length; it should also record the key
// as an updated key, but the trace length does not change since old values were not touched
map.insert(5, 5);
assert_eq!(map.len(), ITEMS.len() + 1);
assert_eq!(map.trace_len(), 1);
assert_eq!(map.updates_len(), 2);
// get some items so that they are saved in the trace; this should record original items
// in the trace, but should not affect the set of updates
let get_items = [0, 1, 2];
for key in get_items.iter() {
map.contains_key(key);
}
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// read the same items again, this should not have any effect on either length, trace, or
// the set of updates
let get_items = [0, 1, 2];
for key in get_items.iter() {
map.contains_key(key);
}
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// read a newly inserted item; this should not affect either length, trace, or the set of
// updates
let _val = map.get(&5).unwrap();
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// update a newly inserted item; this should not affect either length, trace, or the set
// of updates
map.insert(5, 11);
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// Note: The length reported by the proof will be different to the length originally
// reported by the map.
let proof = map.into_proof();
// length of the proof should be equal to get_items + 1. The extra item is the original
// value at key = 4u64
assert_eq!(proof.len(), get_items.len() + 1);
}
#[test]
fn test_iter() {
let mut map = RecordingMap::new(ITEMS.to_vec());
assert!(map.iter().all(|(x, y)| ITEMS.contains(&(*x, *y))));
// when inserting entry with key that already exists the iterator should return the new value
let new_value = 5;
map.insert(4, new_value);
assert_eq!(map.iter().count(), ITEMS.len());
assert!(map.iter().all(|(x, y)| if x == &4 {
y == &new_value
} else {
ITEMS.contains(&(*x, *y))
}));
}
#[test]
fn test_is_empty() {
// instantiate an empty recording map
let empty_map: RecordingMap<u64, u64> = RecordingMap::default();
assert!(empty_map.is_empty());
// instantiate a non-empty recording map
let map = RecordingMap::new(ITEMS.to_vec());
assert!(!map.is_empty());
}
}

36
src/utils/mod.rs Normal file
View File

@@ -0,0 +1,36 @@
use super::{utils::string::String, Word};
use core::fmt::{self, Write};
#[cfg(not(feature = "std"))]
pub use alloc::format;
#[cfg(feature = "std")]
pub use std::format;
mod kv_map;
// RE-EXPORTS
// ================================================================================================
pub use winter_utils::{
string, uninit_vector, Box, ByteReader, ByteWriter, Deserializable, DeserializationError,
Serializable, SliceReader,
};
pub mod collections {
pub use super::kv_map::*;
pub use winter_utils::collections::*;
}
// UTILITY FUNCTIONS
// ================================================================================================
/// Converts a [Word] into hex.
pub fn word_to_hex(w: &Word) -> Result<String, fmt::Error> {
let mut s = String::new();
for byte in w.iter().flat_map(|e| e.to_bytes()) {
write!(s, "{byte:02x}")?;
}
Ok(s)
}