In CycleFold we want to compute
$P_{folded} = P_0 + r ⋅ P_1 + r^2 ⋅ P_2 + r^3 ⋅ P_3 + ... + r^{n-2} ⋅ P_{n-2} + r^{n-1} ⋅ P_{n-1}$,
since the scalars follow the pattern r^i Youssef El Housni (@yelhousni)
proposed to update the approach of the CycleFold circuit to reduce the
number of constraints needed, by computing
$P_{folded} = (((P_{n-1} ⋅ r + P_{n-2}) ⋅ r + P_{n-3})... ) ⋅ r + P_0$.
By itself, this update reduces the number of constraints as the number
of points being folded in the CycleFold circuit grows. But it also has
impact at the HyperNova circuit, where it removes the need of using the
bit representations of the powers of the random value, substancially
reducing the amount of constraints used by the HyperNova
AugmentedFCircuit.
The number of constraints difference in the CycleFold circuit and in
the HyperNova's AugmentedFCircuit:
- CycleFold circuit:
| num points* | old | new | diff |
|-------------|-----------|-----------|----------|
| 2 | 1_354 | 1_354 | 0 |
| 3 | 2_683 | 2_554 | -129 |
| 4 | 4_012 | 3_754 | -258 |
| 8 | 9_328 | 8_554 | -744 |
| 16 | 19_960 | 18_154 | -1_806 |
| 32 | 41_224 | 37_354 | -3_870 |
| 64 | 83_752 | 75_754 | -7_998 |
| 128 | 168_808 | 152_554 | -16_254 |
| 1024 | 1_359_592 | 1_227_754 | -131_838 |
*num points: number of points being folded by the CycleFold circuit.
- HyperNova AugmentedFCircuit circuit
| folded instances* | old | new | diff |
|-------------------|---------|---------|----------|
| 5 | 90_285 | 80_150 | -10_135 |
| 10 | 144_894 | 117_655 | -27_239 |
| 20 | 249_839 | 192_949 | -56_890 |
| 40 | 463_078 | 344_448 | -118_630 |
*folded instances: folded instances per step, half of them being LCCCS
and the other half CCCS.
Co-authored-by: Youssef El Housni <youssef.housni21@gmail.com>
* Support randomness of arbitrary length
* Rename `N_BITS_RO` to `NOVA_N_BITS_RO`
* Compute `r_nonnat` inside `NIFSFullGadget::fold_committed_instance`
* Format
* Use `CycleFold{CommittedInstance, Witness}` in the context of cyclefold
* Format
* Fix the creation of dummy witness
* Make clippy happy
* Improve docs
* feat: enable hiding commitments in nova and hypernova
* fix: set blinding values for witness vector
* fix: remove cloning of the cyclefold running instance
* fix: do not re-use blinding values between prove steps
* fix: specify whether the witness should use blinding values using a
const generic
* feat: create a `dummy` method for nova witnesses as well
* chore: clippy - removed unused imports
- Adds the logic to support multi-instances folding in HyperNova's
AugmentedFCircuit & IVC.
- Adds also methods to generate new LCCCS & CCCS instances that don't
depend on the main folding chain, to be folded in in the next step
- Updates CycleFold circuit & methods to work other folding schemes than
Nova, adapting it to fold multiple points per circuit (instead of
2-to-1 as till now)
- Handle multi-instances folding in the FoldingScheme trait
interface, which expects 'None' in Nova, and 'Some' in HyperNova &
other multi-folding schemes.
* Remove the trait bound `C::BaseField: PrimeField` for better DX
* Methods in `TranscriptVar` now exactly matches the ones in `Transcript`
* Add `ProtoGalaxyTranscriptVar` and `CommittedInstanceVar` for protogalaxy
* betas are unnecessary in "plain" (incoming) instances
* Absorb the result of `get_challenge_nbits` as well
* `ProtoGalaxyTranscript` now allows absorbing mulitple instances
* Always return `Result<(), SynthesisError>` in `ProtoGalaxyTranscriptVar`
* Impl `Transcript{Var}` for `PoseidonSponge{Var}` directly and remove `PoseidonTranscript{Var}`
* `Transcript::absorb_point` doesn't need to return `Error`
* Add `AbsorbNonNative` trait for hashing non-native values
Note that now `absorb_point` only supports hashing points whose BaseField is equal to the sponge's field
* More efficient `TranscriptVar::absorb_point` by securely removing `is_inf`
* Use `sponge` and `transcript` consistently
* Clarify the usage of `AbsorbNonNative{Gadget}`
* Generic `sponge` and `transcript` params
* Avoid unstable `associated_type_bounds`
* Reuse `sponge` in hypernova
* Clean up redundant imports
* Remove unstable code
* Clarify the usage of `absorb_point` and `absorb_nonnative`
- implement hash of public params for Nova & HyperNova
- abstract pp_hash computation for folding schemes
- add pp_hash to solidity contract generator to verify the decider proof
- implement the IVC `FoldingScheme` trait for HyperNova
- refactor Nova's preprocess logic to make it simplier to use
- add to Decider trait (& Nova's DeciderEth) a preprocess method
- get rid of the `init_nova_ivc_params` and `init_ivc_and_decider_params` methods in `examples` since this is achieved with the `FS::preprocess` & `Decider::preprocess` methods
- (update the examples code to the simplified interface using
FS::preprocess & Decider::preprocess)
* Optimize the HyperNova `compute_g`, `compute_Ls` and `to_lcccs` methods
- Optimize the HyperNova `compute_g`, `compute_Ls` and `to_lcccs` methods
- in some tests, increase the size of test matrices to a more real-world size.
| method | matrix size | old version seconds | new version seconds |
| --------------------- | ------------- | ------------------- | ------------------- |
| compute_g | 2^8 x 2^8 | 16.48 | 0.16 |
| compute_g | 2^9 x 2^9 | 122.62 | 0.51 |
| compute_Ls | 2^8 x 2^8 | 9.73 | 0.11 |
| compute_Ls | 2^9 x 2^9 | 67.16 | 0.38 |
| to_lcccs | 2^8 x 2^8 | 4.56 | 0.21 |
| to_lcccs | 2^9 x 2^9 | 67.65 | 0.84 |
- Note: 2^16 x 2^16 is the actual size (upperbound) of the circuit,
which is not represented in the table since it was needing too much
ram to even be computed.
* Optimize HyperNova's `compute_sigmas_thetas` and `compute_Q`
| method | matrix size | old version seconds | new version seconds |
| ------------- | ------------- | ------------------- | ------------------- |
| compute_sigmas_thetas | 2^8 x 2^8 | 12.86 | 0.13 |
| compute_sigmas_thetas | 2^9 x 2^9 | 100.01 | 0.51 |
| compute_Q | 2^8 x 2^8 | 4.49 | 0.07 |
| compute_Q | 2^9 x 2^9 | 70.77 | 0.55 |
* optimize LCCCS::check_relation & CCCS::check_relation, and remove unnessary methods after last reimplementations
* migrate from CurveGroup to PrimeField in hypernova & ccs when curve whas not needed to simplify the code
* refactor test of compute_c circuit to use multiple lcccs&cccs instances
* refactor hypernova's compute_c circuit to reduce from `110635` to `553` constraints
* apply review nits
* fix clippy lints after rust-toolchain v1.76.0
* Compute Decider's CM challenges in Groth16 circuit, link G16 & KZG proofs in Onchain Decider, refactor CommitmentScheme trait
- Refactor commitment package
- Refactor `Commitment` trait and the kzg, ipa, pedersen impls
- Add methods to prove & verify given challenges (not computing them in-method)
- Add KZG challenges computation in decider_eth_circuit
- Add cmE & cmW KZG proving & verification in DeciderEth
- Link Decider's Groth16 proof & KZG proofs data
- Fix point to bytes arkworks inconsistency
- Patch ark_curves to use a cherry-picked version with bn254::constraints & grumpkin for v0.4.0 (once arkworks v0.5.0 is released this will no longer be needed)
* DeciderEthCircuit: Add check eval=p(c) for E & W
The check is temporary disabled due
https://github.com/privacy-scaling-explorations/folding-schemes/issues/80,
but the public inputs and logic are there, to be able to continue the
other parts development while issue #80 is solved.
* Add IPA commitment native implementation
* Add IPA Gadget verifier
* polish Pedersen & IPA, add blind bool param to IPA
* Optimize IPA gadget constraints (and native):
- optimize <s,b> computation from linear to log time
- optimize s computation from k*2^k to k*(2^k)/2
* add small optimization: delegate u_i^-1 to prover and just check u_i*u_i^-1==1 in verifier circuit
* IPA polish and document
* Add 'BLIND' parameter to CommitmentProver trait (and to Pedersen and KZG impls). Fit IPA into CommitmentProver trait.
* rename 'BLIND' to 'H' (hiding) in commitment
* IPA: rm u_invs from Proof and compute them incircuit
* Update IPA's build_s & gadget to use Halo2 approach following @han0110 's suggestion.
This reduced further the amount of constraints needed.
- for k=4: -9k constraints (-7%)
- for k=8: -473k constr (-31%)
- for k=9: -1123k constr (-35%)
- for k=10: -2578k constr (-39%)
And now IPA verification (without amortizing) is very close to Pedersen
verification (in-circuits).
* rm dbg!(cs.num_constraints()) from multiple tests
* IPA::prove remove intermediate v_lo,v_hi vectors, add doc to build_s_gadget
* move powers_of into utils/mod.rs, update iters to cfg_iter
* change: Refactor structure into workspace
* chore: Add empty readme
* change: Transform repo into workspace
* add: Create folding-verifier-solidity crate
* add: Include askama.toml for `sol` extension escaper
* add: Jordi's old Groth16 verifier .sol template and adapt it
* tmp: create simple template struct to test
* Update FoldingSchemes trait, fit Nova+CycleFold
- update lib.rs's `FoldingScheme` trait interface
- fit Nova+CycleFold into the `FoldingScheme` trait
- refactor `src/nova/*`
* chore: add serialization assets for testing
Now we include an `assets` folder with a serialized proof & vk for tests
* Add `examples` dir, with Nova's `FoldingScheme` example
* polishing
* expose poseidon_test_config outside tests
* change: Refactor structure into workspace
* chore: Add empty readme
* change: Transform repo into workspace
* add: Create folding-verifier-solidity crate
* add: Include askama.toml for `sol` extension escaper
* add: Jordi's old Groth16 verifier .sol template and adapt it
* tmp: create simple template struct to test
* feat: templating kzg working
* chore: add emv and revm
* feat: start evm file
* chore: add ark-poly-commit
* chore: move `commitment` to `folding-schemes`
* chore: update `.gitignore` to ignore generated contracts
* chore: update template with bn254 lib on it (avoids import), update for loop to account for whitespaces
* refactor: update template with no lib
* feat: add evm deploy code, compile and create kzg verifier
* chore: update `Cargo.toml` to have `folding-schemes` available with verifiers
* feat: start kzg prove and verify with sol
* chore: compute crs from kzg prover
* feat: evm kzg verification passing
* tmp
* change: Swap order of G2 coordinates within the template
* Update way to serialize proof with correct order
* chore: update `Cargo.toml`
* chore: add revm
* chore: add `save_solidity`
* refactor: verifiers in dedicated mod
* refactor: have dedicated `utils` module
* chore: expose modules
* chore: update verifier for kzg
* chore: rename templates
* fix: look for binary using also name of contract
* refactor: generate groth16 proof for sha256 pre-image, generate groth16 template with verifying key
* chore: template renaming
* fix: switch circuit for circuit that simply adds
* feat: generates test data on the fly
* feat: update to latest groth16 verifier
* refactor: rename folder, update `.gitignore`
* chore: update `Cargo.toml`
* chore: update templates extension to indicate that they are templates
* chore: rename templates, both files and structs
* fix: template inheritance working
* feat: template spdx and pragma statements
* feat: decider verifier compiles, update test for kzg10 and groth16 templates
* feat: parameterize which size of the crs should be stored on the contract
* chore: add comment on how the groth16 and kzg10 proofs will be linked together
* chore: cargo clippy run
* chore: cargo clippy tests
* chore: cargo fmt
* refactor: remove unused lifetime parameter
* chore: end merge
* chore: move examples to `folding-schemes` workspace
* get latest main changes
* fix: temp fix clippy warnings, will remove lints once not used in tests only
* fix: cargo clippy lint added on `code_size`
* fix: update path to test circuit and add step for installing solc
* chore: remove `save_solidity` steps
* fix: the borrowed expression implements the required traits
* chore: update `Cargo.toml`
* chore: remove extra `[patch.crates-io]`
* fix: update to patch at the workspace level and add comment explaining this
* refactor: correct `staticcall` with valid input/output sizes and change return syntax for pairing
* refactor: expose modules and remove `dead_code` calls
* chore: update `README.md`, add additional comments on `kzg10` template and update `groth16` template comments
* chore: be clearer on attributions on `kzg10`
---------
Co-authored-by: CPerezz <c.perezbaro@gmail.com>
Co-authored-by: arnaucube <root@arnaucube.com>
* Add KZG commitment scheme adapted to vector commitment
Add KZG commitment scheme adapted to vector commitment
Also move the `src/pedersen.rs` into `src/commitment/pedersen.rs` where
it will coexist with `kzg.rs` and the trait defined in
`src/commitment/mod.rs`.
* Adapt Pedersen into the new CommitmentProver trait
* add CommitmentProver (Pedersen&KZG) homomorphic property test
* polishing
* Use divide_with_q_and_r, rename skip_first_zero_coeffs
Co-authored-by: han0110 <tinghan0110@gmail.com>
---------
Co-authored-by: han0110 <tinghan0110@gmail.com>
* Port HyperNova's multifolding from https://github.com/privacy-scaling-explorations/multifolding-poc adapting and refactoring some of its methods and structs.
Note: adapted mle.rs methods from dense to sparse repr.
Co-authored-by: George Kadianakis <desnacked@riseup.net>
* HyperNova: move CCS struct outside of LCCCS & CCCS
HyperNova nimfs: move CCS structure outside of LCCCS & CCCS, to avoid
carrying around the whole CCS and duplicating data when is not needed.
Also add feature flags for the folding schemes.
---------
Co-authored-by: George Kadianakis <desnacked@riseup.net>